Startseite Lebenswissenschaften Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen

  • Zuzana Gogová EMAIL logo und Jiří Hanika
Veröffentlicht/Copyright: 25. August 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Kinetic data of glucose oxidation in aqueous solution catalyzed by heterogeneous palladium catalyst are presented under conditions of the catalyst reversible deactivation by oxygen. Measurements were run in a semi-continuous stirred tank reactor at 30°C and atmospheric pressure in kinetic regime. Effect of the reaction mixture composition on the reaction rate is presented. The catalyst activation/reactivation technique is discussed and optimized. Relation between optimal activation time and glucose concentration was defined.

[1] Biella, S., Prati, L., & Rossi, M. (2002). Selective oxidation of d-glucose on gold catalyst. Journal of Catalysis, 206, 242–247. DOI:10.1006/jcat.2001.3497. http://dx.doi.org/10.1006/jcat.2001.349710.1006/jcat.2001.3497Suche in Google Scholar

[2] Bronnimann, C., Bodnar, Z., Hug, P., Mallat, T., & Baiker, A. (1994). Direct oxidation of L-sorbose to 2-keto-L-gulonic acid with molecular oxygen on platinum- and palladium based catalysts. Journal of Catalysis, 150, 199–211. DOI: 10.1006/jcat.1994.1336. http://dx.doi.org/10.1006/jcat.1994.133610.1006/jcat.1994.1336Suche in Google Scholar

[3] Bujalski, W., Nienow, A. W., Chatwin, S., & Cooke, M. (1987). The dependency on scale of power numbers of Rushton disc turbines. Chemical Engineering Science, 42, 317–326. DOI: 10.1016/0009-2509(87)85061-3. http://dx.doi.org/10.1016/0009-2509(87)85061-310.1016/0009-2509(87)85061-3Suche in Google Scholar

[4] Dojčanský, J. & Longauer, J. (2000). Chemické inžinierstvo II (Chemical Engineering II.). Bratislava: Malé centrum. Suche in Google Scholar

[5] Eya, H., Mishima, K., Nagatani, M., Iwai, Y., & Arai, Y. (1994). Measurements and correlation of solubilities of oxygen in aqueous solutions containing glucose, sucrose and maltose. Fluid Phase Equilibria, 97, 201–209. DOI: 10.1016/0378-3812(94)85016-X. http://dx.doi.org/10.1016/0378-3812(94)85016-X10.1016/0378-3812(94)85016-XSuche in Google Scholar

[6] Gallezot, P. (1997). Selective oxidation with air on metal catalysts. Catalysis Today, 37, 405–418. DOI: 10.1016/S0920-5861(97)00024-2. http://dx.doi.org/10.1016/S0920-5861(97)00024-210.1016/S0920-5861(97)00024-2Suche in Google Scholar

[7] Gogová, Z., & Hanika, J. (2009). Dynamic modelling of glucose oxidation with palladium catalyst deactivation in multifunctional CSTR; Benefits of periodic operation. Chemical Engineering Journal, 150, 223–230. DOI:10.1016/j.cej.2009.02.020. http://dx.doi.org/10.1016/j.cej.2009.02.02010.1016/j.cej.2009.02.020Suche in Google Scholar

[8] Gootzen, J. F. E., Wonders, A. H., Cox, A. P., Visscher, W., & van Veen, J. A. R. (1997). On the adsorbates formed during the platinum catalyzed (electro) oxidation of ethanol, 1,2-ethanediol and methyl-α-d-glucopyranoside at high pH. Journal of Molecular Catalysis A: Chemical, 127, 113–131. DOI: 10.1016/S1381-1169(97)00116-7. http://dx.doi.org/10.1016/S1381-1169(97)00116-710.1016/S1381-1169(97)00116-7Suche in Google Scholar

[9] Gurrath, M., Kuretzky, T., Boehm, H. P., Okhlopkova, L. B., Lisitsyn, A. S., & Likholobov, V. A. (2000). Palladium catalysts on activated carbon supports influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon, 38, 1241–1255. DOI: 10.1016/S0008-6223(00)00026-9. http://dx.doi.org/10.1016/S0008-6223(00)00026-910.1016/S0008-6223(00)00026-9Suche in Google Scholar

[10] Juraščík, M., Hucík, M., Sikula, I., Annus, J., & Markoš, J. (2006). Influence of biomass on hydrodynamics of an internal loop airlift reactor. Chemical Papers, 60, 441–445. DOI: 10.2478/s11696-006-0080-2. http://dx.doi.org/10.2478/s11696-006-0080-210.2478/s11696-006-0080-2Suche in Google Scholar

[11] Ketteler, G., Ogletree, D. F., Bluhm, H., Liu, H., Hebenstreit, E. L. D., & Salmeron, M. (2005). In situ spectroscopic study of the oxidation and reduction of Pd(111). Journal of the American Chemical Society 127, 18269–18273; DOI:10.1021/ja055754y. http://dx.doi.org/10.1021/ja055754y10.1021/ja055754ySuche in Google Scholar PubMed

[12] Klein, J., Rosenberg, M., Markoš, J., Dolgoš, O., Krošlák, M., & Krištofíková, Ľ. (2002). Biotransformation of glucose to gluconic acid by Aspergillus niger — study of mass transfer in an airlift bioreactor. Biochemical Engineering Journal, 10, 195–205. DOI: 10.1016/S1369-703X(01)00181-4. http://dx.doi.org/10.1016/S1369-703X(01)00181-410.1016/S1369-703X(01)00181-4Suche in Google Scholar

[13] Kunz, M., & Recker, C. (1995). A new continuous oxidation process for carbohydrates. Carbohydrates in Europe, 13, 11–15. Suche in Google Scholar

[14] Liu, J., & Cui, Z. (2007). Optimization of operating conditions for glucose oxidation in an enzymatic membrane bioreactor. Journal of Membrane Science, 302, 180–187. DOI: 10.1016/j.memsci.2007.06.044. http://dx.doi.org/10.1016/j.memsci.2007.06.04410.1016/j.memsci.2007.06.044Suche in Google Scholar

[15] Lundgren, E., Kresse, G., Klein, C., Borg, M., Andersen, J. N., de Santis, M., Gauthier, Y., Konvicka, C., Schmid, M., & Varga, P. (2002). Two-dimensional oxide on Pd(111). Physical Review Letters, 88(24). DOI: 10.1103/PhysRevLett.88.246103. 10.1103/PhysRevLett.88.246103Suche in Google Scholar

[16] Mallat, T., & Baiker, A. (1994). Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catalysis Today, 19, 247–284. DOI: 10.1016/0920-5861(94)80187-8. http://dx.doi.org/10.1016/0920-5861(94)80187-810.1016/0920-5861(94)80187-8Suche in Google Scholar

[17] Markusse, A. P., Kuster, B. F. M., & Schouten, J. C. (2001). Platinum catalysed aqueous methyl α-d-glucopyranoside oxidation in a multiphase redox-cycle reactor. Catalysis Today, 66, 191–197. DOI: 10.1016/S0920-5861(00)00648-9. http://dx.doi.org/10.1016/S0920-5861(00)00648-910.1016/S0920-5861(00)00648-9Suche in Google Scholar

[18] Mirescu, A., & Prusse, U. (2007). A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalyst. Applied Catalysis B: Environmental, 70, 644–652. DOI: 10.1016/j.apcatb.2006.01.017. http://dx.doi.org/10.1016/j.apcatb.2006.01.01710.1016/j.apcatb.2006.01.017Suche in Google Scholar

[19] Nikov, I., & Paev, K. (1995). Palladium on alumina catalyst for glucose oxidation: Reaction kinetics and catalyst deactivation. Catalysis Today, 24, 41–47. DOI: 10.1016/0920-5861(95)00011-4. http://dx.doi.org/10.1016/0920-5861(95)00011-410.1016/0920-5861(95)00011-4Suche in Google Scholar

[20] Sano, Y., Yamaguchi, N., & Adachi, T. (1974). Mass transfer coefficients for suspended particles in agitated vessels and bubble columns. Journal of Chemical Engineering of Japan, 7(3), 255–261. DOI: 10.1252/jcej.7.255. http://dx.doi.org/10.1252/jcej.7.25510.1252/jcej.7.255Suche in Google Scholar

[21] Sikula, I., Juraščík, M., & Markoš, J. (2006). Simulation of gluconic acid production in the internal loop airlift bioreactor. Inżynieria i Aparatura Chemiczna, 6, 212–214. Suche in Google Scholar

[22] Sikula, I., & Markoš, J. (2008). Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model. Chemical Papers, 62, 10–17; DOI: 10.2478/s11696-007-0073-9. http://dx.doi.org/10.2478/s11696-007-0073-910.2478/s11696-007-0073-9Suche in Google Scholar

[23] Silveston, P. L. (1998). Composition modulation of catalytic reactors. Topics in chemical engineering, Vol. 11. Amsterdam: Gordon and Breach Science Publishers. Suche in Google Scholar

[24] Simmons, G. W., Wang, Y., Marcos, J., & Klier, K. (1991). Oxygen adsorption on Pd(100) surface: Phase transformations and surface reconstruction. The Journal of Physical Chemistry, 95, 4522–4528. http://dx.doi.org/10.1021/j100164a06310.1021/j100164a063Suche in Google Scholar

[25] Singh, O. V., & Kumar, R. (2007). Biotechnological production of gluconic acid: future implications. Applied Microbiology and Biotechnology, 75, 713–722. DOI: 10.1007/s00253-007-0851-x. http://dx.doi.org/10.1007/s00253-007-0851-x10.1007/s00253-007-0851-xSuche in Google Scholar

[26] Thielecke, N., Vorlop, K. D., & Prusse, U. (2007). Long-term stability of an Au/Al2O3 catalyst prepared by incipient wetness in continuous-flow glucose oxidation. Cataysis Today, 122, 266–269. DOI:10.1016/j.cattod.2007.02.008. http://dx.doi.org/10.1016/j.cattod.2007.02.00810.1016/j.cattod.2007.02.008Suche in Google Scholar

[27] Tokarev, A. V., Murzina, E. V., Mikkola, J.-P., Kuusisto, J., Kustov, L. M., & Murzin, D. Y. (2007). Application of in situ catalyst potential measurements for estimation of reaction performance: Lactose oxidation over Au and Pd catalysts. Chemical Engineering Journal, 134, 153–161. DOI: 10.1016/j.cej.2007.03.056. http://dx.doi.org/10.1016/j.cej.2007.03.05610.1016/j.cej.2007.03.056Suche in Google Scholar

[28] Viet Bui, A., & Nguyen, M. H. (2004). Prediction of viscosity of glucose and calcium chloride solutions. Journal of Food Engineering, 62, 345–349. DOI: 10.1016/s0260-8774(03)00249-8. http://dx.doi.org/10.1016/S0260-8774(03)00249-810.1016/S0260-8774(03)00249-8Suche in Google Scholar

[29] Vleeming, J. H., Kuster, B. F. M., & Marin, G. B. (1997). Selective oxidation of methyl α-d-glucopyranoside with oxygen over supported platinum: Kinetic modeling in the presence of deactivation by overoxidation of the catalyst. Industial & Engineering Chemistry Research, 36, 3541–3553. DOI: 10.1021/ie9607659. http://dx.doi.org/10.1021/ie960765910.1021/ie9607659Suche in Google Scholar

Published Online: 2009-8-25
Published in Print: 2009-10-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Magnetic nano- and microparticles in biotechnology
  2. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
  3. Copper determination using ICP-MS with hexapole collision cell
  4. Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
  5. Robust stabilization of a chemical reactor
  6. Influence of production progress on the heavy metal content in flax fibers
  7. In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
  8. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
  9. Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
  10. Characterization of mechanochemically synthesized lead selenide
  11. Hydroxyapatite modified with silica used for sorption of copper(II)
  12. Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
  13. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
  14. Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
  15. Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
  16. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
  17. Gas chromatographic retention times prediction for components of petroleum condensate fraction
  18. Gas chromatography with surface ionization detection of nitro pesticides
  19. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
  20. Aqueous foam stabilized by polyoxyethylene dodecyl ether
Heruntergeladen am 16.1.2026 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0053-3/html
Button zum nach oben scrollen