Abstract
Kinetic data of glucose oxidation in aqueous solution catalyzed by heterogeneous palladium catalyst are presented under conditions of the catalyst reversible deactivation by oxygen. Measurements were run in a semi-continuous stirred tank reactor at 30°C and atmospheric pressure in kinetic regime. Effect of the reaction mixture composition on the reaction rate is presented. The catalyst activation/reactivation technique is discussed and optimized. Relation between optimal activation time and glucose concentration was defined.
[1] Biella, S., Prati, L., & Rossi, M. (2002). Selective oxidation of d-glucose on gold catalyst. Journal of Catalysis, 206, 242–247. DOI:10.1006/jcat.2001.3497. http://dx.doi.org/10.1006/jcat.2001.349710.1006/jcat.2001.3497Suche in Google Scholar
[2] Bronnimann, C., Bodnar, Z., Hug, P., Mallat, T., & Baiker, A. (1994). Direct oxidation of L-sorbose to 2-keto-L-gulonic acid with molecular oxygen on platinum- and palladium based catalysts. Journal of Catalysis, 150, 199–211. DOI: 10.1006/jcat.1994.1336. http://dx.doi.org/10.1006/jcat.1994.133610.1006/jcat.1994.1336Suche in Google Scholar
[3] Bujalski, W., Nienow, A. W., Chatwin, S., & Cooke, M. (1987). The dependency on scale of power numbers of Rushton disc turbines. Chemical Engineering Science, 42, 317–326. DOI: 10.1016/0009-2509(87)85061-3. http://dx.doi.org/10.1016/0009-2509(87)85061-310.1016/0009-2509(87)85061-3Suche in Google Scholar
[4] Dojčanský, J. & Longauer, J. (2000). Chemické inžinierstvo II (Chemical Engineering II.). Bratislava: Malé centrum. Suche in Google Scholar
[5] Eya, H., Mishima, K., Nagatani, M., Iwai, Y., & Arai, Y. (1994). Measurements and correlation of solubilities of oxygen in aqueous solutions containing glucose, sucrose and maltose. Fluid Phase Equilibria, 97, 201–209. DOI: 10.1016/0378-3812(94)85016-X. http://dx.doi.org/10.1016/0378-3812(94)85016-X10.1016/0378-3812(94)85016-XSuche in Google Scholar
[6] Gallezot, P. (1997). Selective oxidation with air on metal catalysts. Catalysis Today, 37, 405–418. DOI: 10.1016/S0920-5861(97)00024-2. http://dx.doi.org/10.1016/S0920-5861(97)00024-210.1016/S0920-5861(97)00024-2Suche in Google Scholar
[7] Gogová, Z., & Hanika, J. (2009). Dynamic modelling of glucose oxidation with palladium catalyst deactivation in multifunctional CSTR; Benefits of periodic operation. Chemical Engineering Journal, 150, 223–230. DOI:10.1016/j.cej.2009.02.020. http://dx.doi.org/10.1016/j.cej.2009.02.02010.1016/j.cej.2009.02.020Suche in Google Scholar
[8] Gootzen, J. F. E., Wonders, A. H., Cox, A. P., Visscher, W., & van Veen, J. A. R. (1997). On the adsorbates formed during the platinum catalyzed (electro) oxidation of ethanol, 1,2-ethanediol and methyl-α-d-glucopyranoside at high pH. Journal of Molecular Catalysis A: Chemical, 127, 113–131. DOI: 10.1016/S1381-1169(97)00116-7. http://dx.doi.org/10.1016/S1381-1169(97)00116-710.1016/S1381-1169(97)00116-7Suche in Google Scholar
[9] Gurrath, M., Kuretzky, T., Boehm, H. P., Okhlopkova, L. B., Lisitsyn, A. S., & Likholobov, V. A. (2000). Palladium catalysts on activated carbon supports influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon, 38, 1241–1255. DOI: 10.1016/S0008-6223(00)00026-9. http://dx.doi.org/10.1016/S0008-6223(00)00026-910.1016/S0008-6223(00)00026-9Suche in Google Scholar
[10] Juraščík, M., Hucík, M., Sikula, I., Annus, J., & Markoš, J. (2006). Influence of biomass on hydrodynamics of an internal loop airlift reactor. Chemical Papers, 60, 441–445. DOI: 10.2478/s11696-006-0080-2. http://dx.doi.org/10.2478/s11696-006-0080-210.2478/s11696-006-0080-2Suche in Google Scholar
[11] Ketteler, G., Ogletree, D. F., Bluhm, H., Liu, H., Hebenstreit, E. L. D., & Salmeron, M. (2005). In situ spectroscopic study of the oxidation and reduction of Pd(111). Journal of the American Chemical Society 127, 18269–18273; DOI:10.1021/ja055754y. http://dx.doi.org/10.1021/ja055754y10.1021/ja055754ySuche in Google Scholar PubMed
[12] Klein, J., Rosenberg, M., Markoš, J., Dolgoš, O., Krošlák, M., & Krištofíková, Ľ. (2002). Biotransformation of glucose to gluconic acid by Aspergillus niger — study of mass transfer in an airlift bioreactor. Biochemical Engineering Journal, 10, 195–205. DOI: 10.1016/S1369-703X(01)00181-4. http://dx.doi.org/10.1016/S1369-703X(01)00181-410.1016/S1369-703X(01)00181-4Suche in Google Scholar
[13] Kunz, M., & Recker, C. (1995). A new continuous oxidation process for carbohydrates. Carbohydrates in Europe, 13, 11–15. Suche in Google Scholar
[14] Liu, J., & Cui, Z. (2007). Optimization of operating conditions for glucose oxidation in an enzymatic membrane bioreactor. Journal of Membrane Science, 302, 180–187. DOI: 10.1016/j.memsci.2007.06.044. http://dx.doi.org/10.1016/j.memsci.2007.06.04410.1016/j.memsci.2007.06.044Suche in Google Scholar
[15] Lundgren, E., Kresse, G., Klein, C., Borg, M., Andersen, J. N., de Santis, M., Gauthier, Y., Konvicka, C., Schmid, M., & Varga, P. (2002). Two-dimensional oxide on Pd(111). Physical Review Letters, 88(24). DOI: 10.1103/PhysRevLett.88.246103. 10.1103/PhysRevLett.88.246103Suche in Google Scholar
[16] Mallat, T., & Baiker, A. (1994). Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catalysis Today, 19, 247–284. DOI: 10.1016/0920-5861(94)80187-8. http://dx.doi.org/10.1016/0920-5861(94)80187-810.1016/0920-5861(94)80187-8Suche in Google Scholar
[17] Markusse, A. P., Kuster, B. F. M., & Schouten, J. C. (2001). Platinum catalysed aqueous methyl α-d-glucopyranoside oxidation in a multiphase redox-cycle reactor. Catalysis Today, 66, 191–197. DOI: 10.1016/S0920-5861(00)00648-9. http://dx.doi.org/10.1016/S0920-5861(00)00648-910.1016/S0920-5861(00)00648-9Suche in Google Scholar
[18] Mirescu, A., & Prusse, U. (2007). A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalyst. Applied Catalysis B: Environmental, 70, 644–652. DOI: 10.1016/j.apcatb.2006.01.017. http://dx.doi.org/10.1016/j.apcatb.2006.01.01710.1016/j.apcatb.2006.01.017Suche in Google Scholar
[19] Nikov, I., & Paev, K. (1995). Palladium on alumina catalyst for glucose oxidation: Reaction kinetics and catalyst deactivation. Catalysis Today, 24, 41–47. DOI: 10.1016/0920-5861(95)00011-4. http://dx.doi.org/10.1016/0920-5861(95)00011-410.1016/0920-5861(95)00011-4Suche in Google Scholar
[20] Sano, Y., Yamaguchi, N., & Adachi, T. (1974). Mass transfer coefficients for suspended particles in agitated vessels and bubble columns. Journal of Chemical Engineering of Japan, 7(3), 255–261. DOI: 10.1252/jcej.7.255. http://dx.doi.org/10.1252/jcej.7.25510.1252/jcej.7.255Suche in Google Scholar
[21] Sikula, I., Juraščík, M., & Markoš, J. (2006). Simulation of gluconic acid production in the internal loop airlift bioreactor. Inżynieria i Aparatura Chemiczna, 6, 212–214. Suche in Google Scholar
[22] Sikula, I., & Markoš, J. (2008). Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model. Chemical Papers, 62, 10–17; DOI: 10.2478/s11696-007-0073-9. http://dx.doi.org/10.2478/s11696-007-0073-910.2478/s11696-007-0073-9Suche in Google Scholar
[23] Silveston, P. L. (1998). Composition modulation of catalytic reactors. Topics in chemical engineering, Vol. 11. Amsterdam: Gordon and Breach Science Publishers. Suche in Google Scholar
[24] Simmons, G. W., Wang, Y., Marcos, J., & Klier, K. (1991). Oxygen adsorption on Pd(100) surface: Phase transformations and surface reconstruction. The Journal of Physical Chemistry, 95, 4522–4528. http://dx.doi.org/10.1021/j100164a06310.1021/j100164a063Suche in Google Scholar
[25] Singh, O. V., & Kumar, R. (2007). Biotechnological production of gluconic acid: future implications. Applied Microbiology and Biotechnology, 75, 713–722. DOI: 10.1007/s00253-007-0851-x. http://dx.doi.org/10.1007/s00253-007-0851-x10.1007/s00253-007-0851-xSuche in Google Scholar
[26] Thielecke, N., Vorlop, K. D., & Prusse, U. (2007). Long-term stability of an Au/Al2O3 catalyst prepared by incipient wetness in continuous-flow glucose oxidation. Cataysis Today, 122, 266–269. DOI:10.1016/j.cattod.2007.02.008. http://dx.doi.org/10.1016/j.cattod.2007.02.00810.1016/j.cattod.2007.02.008Suche in Google Scholar
[27] Tokarev, A. V., Murzina, E. V., Mikkola, J.-P., Kuusisto, J., Kustov, L. M., & Murzin, D. Y. (2007). Application of in situ catalyst potential measurements for estimation of reaction performance: Lactose oxidation over Au and Pd catalysts. Chemical Engineering Journal, 134, 153–161. DOI: 10.1016/j.cej.2007.03.056. http://dx.doi.org/10.1016/j.cej.2007.03.05610.1016/j.cej.2007.03.056Suche in Google Scholar
[28] Viet Bui, A., & Nguyen, M. H. (2004). Prediction of viscosity of glucose and calcium chloride solutions. Journal of Food Engineering, 62, 345–349. DOI: 10.1016/s0260-8774(03)00249-8. http://dx.doi.org/10.1016/S0260-8774(03)00249-810.1016/S0260-8774(03)00249-8Suche in Google Scholar
[29] Vleeming, J. H., Kuster, B. F. M., & Marin, G. B. (1997). Selective oxidation of methyl α-d-glucopyranoside with oxygen over supported platinum: Kinetic modeling in the presence of deactivation by overoxidation of the catalyst. Industial & Engineering Chemistry Research, 36, 3541–3553. DOI: 10.1021/ie9607659. http://dx.doi.org/10.1021/ie960765910.1021/ie9607659Suche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether