Home Robust stabilization of a chemical reactor
Article
Licensed
Unlicensed Requires Authentication

Robust stabilization of a chemical reactor

  • Monika Bakošová EMAIL logo , Dalibor Puna , Petr Dostál and Jana Závacká
Published/Copyright: August 25, 2009
Become an author with De Gruyter Brill

Abstract

Robust static output feedback control was applied to a continuous stirred tank reactor with parametric uncertainty and multiple steady states in which exothermic reaction takes place. The problem of robust controller design was converted to a solution of linear matrix inequalities and a computationally simple non-iterative algorithm is presented. The possibility of using robust static output feedback for stabilization of reactors with uncertainty and comparison of robust P and PI controllers with an optimal controller is demonstrated by simulation results.

[1] Altinten, A., Erdoğan, S., Hapoğlu, H., & Alpbaz, M. (2003). Control of a polymerization reactor by fuzzy control method with genetic algorithm. Computers and Chemical Engineering, 27, 1031–1040. DOI: 10.1016/S0098-1354(03)00073-5. http://dx.doi.org/10.1016/S0098-1354(03)00073-510.1016/S0098-1354(03)00073-5Search in Google Scholar

[2] Alvarez, J. (1996). Output-feedback control of nonlinear plants. AIChE Journal, 42, 2540–2554. DOI: 10.1002/aic.690420914. http://dx.doi.org/10.1002/aic.69042091410.1002/aic.690420914Search in Google Scholar

[3] Alvarez-Ramirez, J., & Femat, R. (1999). Robust PI stabilization of a class of chemical reactors. Systems and Control Letters, 38, 219–225. DOI: 10.1016/S0167-6911(99)00057-2. http://dx.doi.org/10.1016/S0167-6911(99)00057-210.1016/S0167-6911(99)00057-2Search in Google Scholar

[4] Antonelli, R., & Astolfi, A. (2003). Continuous stirred tank reactors: easy to stabilise? Automatica, 39, 1817–1827. DOI: 10.1016/S0005-1098(03)00177-8. http://dx.doi.org/10.1016/S0005-1098(03)00177-810.1016/S0005-1098(03)00177-8Search in Google Scholar

[5] Bakošová, M., Puna, D., & Mészáros, A. (2005). Robust controller design for a chemical reactor. In L. Puigjaner & A. Espuna (Eds.), European Symposium on Computer Aided Process Engineering — 15 (pp. 1303–1308). Amsterdam: Elsevier. Search in Google Scholar

[6] Boyd, S., El-Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia: SIAM. 10.1137/1.9781611970777Search in Google Scholar

[7] Doyle, J., & Stein, G. (1981). Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control, 26, 4–16. http://dx.doi.org/10.1109/TAC.1981.110255510.1109/TAC.1981.1102555Search in Google Scholar

[8] Dufour, P., & Touré, Y. (2004). Multivariable model predictive control of a catalytic reverse flow reactor. Computers and Chemical Engineering, 28, 2259–2270. DOI: 10.1016/j.compchemeng.2004.04.006. http://dx.doi.org/10.1016/j.compchemeng.2004.04.00610.1016/j.compchemeng.2004.04.006Search in Google Scholar

[9] Edouard, D., Dufour, P., & Hammouri, H. (2005). Observer based multivariable control of a catalytic reverse flow reactor: comparison between LQR and MPC approaches. Computers and Chemical Engineering, 29, 851–865. DOI: 10.1016/j.compchemeng.2004.09.018. http://dx.doi.org/10.1016/j.compchemeng.2004.09.01810.1016/j.compchemeng.2004.09.018Search in Google Scholar

[10] Figueroa, J., Biagiola, S., & Alvarez, J. (2007). Constructive MPC of a class of exothermic CSTRs. In Proceedings of the 8th International IFAC Symposium on Dynamics and Control of Process Systems, 6–8 June 2007 (171.pdf). Cancun: IFAC. Search in Google Scholar

[11] Flores-Tlacuahuac, A., Alvarez, J., Saldívar-Guerra, E., & Oaxaca, G. (2005). Optimal transition and robust control design for exothermic continuous reactors. AIChE Journal, 51, 895–908. DOI: 10.1002/aic.10345. http://dx.doi.org/10.1002/aic.1034510.1002/aic.10345Search in Google Scholar

[12] Gerhard, J., Mönningmann, M., & Marquardt, W. (2004). Robust stable nonlinear control and design of a CSTR in a large operating range. In Proceedings of the 7th International Symposium on Dynamics and Control of Process Systems, 5–7 July 2004 (92.pdf). Massachusetts: IFAC. Search in Google Scholar

[13] González, P., & Alvarez, J. (2006). Output-feedback control of continuous polymer reactors with continuous and discrete measurements. In International Symposium on Advanced Control of Chemical Processes, 2–5 April 2006 (135.pdf). Gramado: IFAC. Search in Google Scholar

[14] Hirmajer, T., & Fikar, M. (2006). Optimal control of a two-stage reactor system. Chemical Papers, 60, 381–387. DOI: 10.2478/s11696-006-0069-x. http://dx.doi.org/10.2478/s11696-006-0069-x10.2478/s11696-006-0069-xSearch in Google Scholar

[15] Ingham, J., Dunn, I. J., Heinzle, E., & Přenosil, J. E. (1994). Chemical engineering dynamics. Weinheim: VCH. http://dx.doi.org/10.1002/978352761601510.1002/9783527616015Search in Google Scholar

[16] Kučera, V., & de Souza, C. E. (1995). A necessary and sufficient conditions for output feedback stabilizability. Automatica, 31, 1357–1359. DOI: 10.1016/0005-1098(95)00048-2. http://dx.doi.org/10.1016/0005-1098(95)00048-210.1016/0005-1098(95)00048-2Search in Google Scholar

[17] Kuník, S., Mudrončík, D. & Rakovsky, M. (2006). Virtual control system of exothermic reactor using the controller KRGN 90. Materials Science and Technology, at http://www.mtf.stuba.sk/docs//internetovycasopis/2006/1/obsah.htm. Search in Google Scholar

[18] Mikleš, J., Čirka, Ľ., & Fikar, M. (2006). H2 optimal controller with integral action for a chemical reactor. In Proceedings of the IEEE International Conference on Control Applications, 4–6 October 2006 (pp. 2127–2131). Munich: Omnipress. Search in Google Scholar

[19] Mikleš, J., & Fikar, M. (2007). Process modelling, identification, and control. Berlin, Heidelberg: Springer Verlag. Search in Google Scholar

[20] Molnár, A., Markoš, J., & Jelemensky, Ľ. (2002). Accuracy of mathematical model with regard to safety analysis of chemical reactors. Chemical Papers, 56, 357–361. Search in Google Scholar

[21] Mutha, R. K., Cluett, W. R., & Penlidis, A. (1997). Online nonlinear model-based estimation and control of a polymer reactor. AIChE Journal, 43, 3042–3058. DOI: 10.1002/aic.690431116. http://dx.doi.org/10.1002/aic.69043111610.1002/aic.690431116Search in Google Scholar

[22] Nakanishi, E., Kawajiri Y., & Hashimoto, Y. (1998). Linearizing control of CSTR and its robust stabilization by H∞ controller. Journal of Chemical Engineering of Japan, 31, 780–786. DOI: 10.1252/jcej.31.780. http://dx.doi.org/10.1252/jcej.31.78010.1252/jcej.31.780Search in Google Scholar

[23] Pedersen, K., & Jorgensen, S. B. (1999). Control of fold bifurcation application on chemostat around critical dilution rate. In Proceedings of the European Control Conference ECC’99, 31 August–3 September 1999 (F1028.pdf). Karlsruhe: GMA. Search in Google Scholar

[24] Salgado, J. D., Alvarez, J., & Moreno, J. (2006). Control of continuous reactors with non-monotonic reaction rate. In International Symposium on Advanced Control of Chemical Processes, 2–5 April 2006 (183.pdf). Gramado: IFAC. Search in Google Scholar

[25] Salau, N. P. G., Secchi, A. R., Trierweiler, J. O., & Neumann, G. A. (2006). Multivariable control strategy based on bifurcation analysis of an industrial gas-phase polymerization reactor. In International Symposium on Advanced Control of Chemical Processes. 2–5 April 2006 (166.pdf). Gramado: IFAC. Search in Google Scholar

[26] Syrmos, V. L., Abdallah, C. T., Dorato, P., & Grigoriadis, K. (1997). Static output feedback — A survey. Automatica, 33, 125–137. DOI: 10.1016/S0005-1098(96)00141-0. http://dx.doi.org/10.1016/S0005-1098(96)00141-010.1016/S0005-1098(96)00141-0Search in Google Scholar

[27] VanAntwerp, J. G., & Braatz, R. D. (1999). Linear and bilinear matrix inequalities in chemical process control. In Proceedings of the European Control Conference ECC’99, 31 August–3 September, 1999 (F1011.pdf). Karlsruhe: GMA. Search in Google Scholar

[28] Veselý, V. (2001). Static output feedback controller design. Kybernetika, 37, 205–221. Search in Google Scholar

[29] Veselý, V. (2002). Robust output feedback controller design for linear parametric uncertain systems. Journal of Electrical Engineering, 53, 117–125. Search in Google Scholar

[30] Zames, G., & Francis, B. A. (1983). Feedback, minimax sensitivity and optimal robustness. IEEE Transactions on Automatic Control, 28, 586–601. 10.1109/TAC.1983.1103275Search in Google Scholar

Published Online: 2009-8-25
Published in Print: 2009-10-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Magnetic nano- and microparticles in biotechnology
  2. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
  3. Copper determination using ICP-MS with hexapole collision cell
  4. Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
  5. Robust stabilization of a chemical reactor
  6. Influence of production progress on the heavy metal content in flax fibers
  7. In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
  8. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
  9. Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
  10. Characterization of mechanochemically synthesized lead selenide
  11. Hydroxyapatite modified with silica used for sorption of copper(II)
  12. Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
  13. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
  14. Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
  15. Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
  16. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
  17. Gas chromatographic retention times prediction for components of petroleum condensate fraction
  18. Gas chromatography with surface ionization detection of nitro pesticides
  19. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
  20. Aqueous foam stabilized by polyoxyethylene dodecyl ether
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0046-2/html
Scroll to top button