Startseite Lebenswissenschaften Aqueous foam stabilized by polyoxyethylene dodecyl ether
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Aqueous foam stabilized by polyoxyethylene dodecyl ether

  • Xi-An Li EMAIL logo , Jian-Bing Peng und Yong-Li Yan
Veröffentlicht/Copyright: 25. August 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Foaming properties of aqueous solutions of the nonionic surfactant polyoxyethylene dodecyl ether (C12EOn) were studied at 298 K. Four different EO chain lengths, namely C12EO3, C12EO5, C12EO7, and C12EO9, were considered. The foams obtained from C12EO3 or C12EO5 were extraordinary stable retaining a constant volume for more than 20 h. The presence of lamellar liquid crystalline phases was mainly responsible for the super-stable aqueous foams.

[1] Alargova, R. G., Warhadpande, D. S., Paunov, V. N., & Velev, O. D. (2004). Foam superstabilization by polymer microrods. Langmuir, 20, 10371–10374. DOI: 10.1021/la048647a. http://dx.doi.org/10.1021/la048647a10.1021/la048647aSuche in Google Scholar

[2] Bhatia, D., Goel, G., Bhimania, S. K., & Bhaskarwar, A. N. (2005). Characterization and drainage kinetics of colloidal gas aphrons. AIChE Journal, 51, 3048–3058. DOI: 10.1002/aic.10552. http://dx.doi.org/10.1002/aic.1055210.1002/aic.10552Suche in Google Scholar

[3] Binks, B. P., & Horozov, T. S. (2005). Aqueous foams stabilised solely by silica nanoparticles. Angewandte Chemie International Edition, 44, 3722–3725. DOI: 10.1002/ange.200462470. http://dx.doi.org/10.1002/anie.20046247010.1002/ange.200462470Suche in Google Scholar

[4] Borden, M. (2009). Nanostructural features on stable microbubbles. Soft Matter, 5, 716–720. DOI: 10.1039/b815506b. http://dx.doi.org/10.1039/b815506b10.1039/B815506BSuche in Google Scholar

[5] Dickinson, E. (1998). Proteins at interfaces and in emulsions. Stability, rheology and interactions. Journal of the Chemical Society, Faraday Transactions, 94, 1657–1669. DOI: 10.1039/a801167b. http://dx.doi.org/10.1039/a801167b10.1039/a801167bSuche in Google Scholar

[6] Du, Z. P., Bilbao-Montoya, M. P., Binks, B. P., Dickinson, E., Ettelaie, R., & Murray, B. S. (2003). Outstanding stability of particle-stabilized bubbles. Langmuir, 19, 3106–3108. DOI: 10.1021/la034042n. http://dx.doi.org/10.1021/la034042n10.1021/la034042nSuche in Google Scholar

[7] Friberg, S., Linden, S. E., & Saito, H. (1974). Thin films from liquid crystals. Nature, 251, 494–495. DOI: 10.1038/251494a0. http://dx.doi.org/10.1038/251494a010.1038/251494a0Suche in Google Scholar

[8] Friberg, S. E., & Solans, C. (1986). Surfactant association structures and the stability of emulsions and foams. Langmuir, 2, 121–126. DOI: 10.1021/la00068a001. http://dx.doi.org/10.1021/la00068a00110.1021/la00068a001Suche in Google Scholar

[9] Friberg, S. E., & Fang, J.-H. (1987). Foams from aqueous systems of polymerizable surfactants. Journal of Colloid and Interface Science, 118, 543–552. DOI: 10.1016/0021-9797(87)90488-7. http://dx.doi.org/10.1016/0021-9797(87)90488-710.1016/0021-9797(87)90488-7Suche in Google Scholar

[10] Friberg, S. E. (1992). Amphiphilic association structures and thin films. Langmuir, 8, 1889–1892. DOI: 10.1021/la00044a003. http://dx.doi.org/10.1021/la00044a00310.1021/la00044a003Suche in Google Scholar

[11] Fujii, S., Iddon, P. D., Ryan, A. J., & Armes, S. P. (2006). Aqueous particulate foams stabilized solely with polymer latex particles. Langmuir, 22, 7512–7520. DOI: 10.1021/la060812u. http://dx.doi.org/10.1021/la060812u10.1021/la060812uSuche in Google Scholar PubMed

[12] Gonzenbach, U. T., Studart, A. R., Tervoort, E., & Gauckler, L. J. (2006a). Stabilization of foams with inorganic colloidal particles. Langmuir, 22, 10983–10988. DOI: 10.1021/la061825a. http://dx.doi.org/10.1021/la061825a10.1021/la061825aSuche in Google Scholar PubMed

[13] Gonzenbach, U. T., Studart, A. R., Tervoort, E., & Gauckler, L. J. (2006b). Ultrastable particle-stabilized foams. Angewandte Chemie International Edition, 45, 3526–3530. DOI: 10.1002/ange.200503676. http://dx.doi.org/10.1002/anie.20050367610.1002/ange.200503676Suche in Google Scholar

[14] Huang, K. L., Shigeta, K., & Kunieda, H. (1998). Phase behavior of polyoxyethylene dodecyl ether-water systems. In Progress in Colloid and Polymer Science XII, 110, 171–174. DOI: 10.1007/BFb0118071. http://dx.doi.org/10.1007/BFb011807110.1007/BFb0118071Suche in Google Scholar

[15] Inoue, T., Matsuda, M., Nibu, Y., Misono, Y., & Suzuki, M. (2001). Phase behavior of heptaethylene glycol dodecyl ether and its aqueous mixture revealed by DSC and FT-IR spectroscopy. Langmuir, 17, 1833–1840. DOI: 10.1021/la001231m. http://dx.doi.org/10.1021/la001231m10.1021/la001231mSuche in Google Scholar

[16] Jauregi, P., Mitchell, G., & Varley, J. (2000). Colloidal gas aphrons (CGA): Dispersion and structural features. AIChE Journal, 46, 24–36. DOI: 10.1002/aic.690460105. http://dx.doi.org/10.1002/aic.69046010510.1002/aic.690460105Suche in Google Scholar

[17] Langevin, D. (2008). Aqueous foams: A field of investigation at the frontier between chemistry and physics. ChemPhysChem, 9, 510–522. DOI: 10.1002/cphc.200700675. http://dx.doi.org/10.1002/cphc.20070067510.1002/cphc.200700675Suche in Google Scholar PubMed

[18] Mitchell, D. J., Tiddy, G. J. T., Waring, L., Bostock, T., & McDonald, M. P. (1983). Phase behaviour of polyoxyethylene surfactants. Journal of the Chemical Society, Faraday Transactions 1, 79, 975–1000. DOI: 10.1039/F19837900975. http://dx.doi.org/10.1039/f1983790097510.1039/f19837900975Suche in Google Scholar

[19] Murray, B. S., & Ettelaie, R. (2004). Foam stability: proteins and nanoparticles. Current Opinion in Colloid & Interface Science, 9, 314–320. DOI: 10.1016/j.cocis.2004.09.004. http://dx.doi.org/10.1016/j.cocis.2004.09.00410.1016/j.cocis.2004.09.004Suche in Google Scholar

[20] Nilsson, P. G., & Lindman, B. (1984). Nuclear magnetic resonance self-diffusion and proton relaxation studies of nonionic surfactant solutions. Aggregate shape in isotropic solutions above the clouding temperature. Journal of Physical Chemistry, 88, 4764–4769. DOI: 10.1021/j150664a063. http://dx.doi.org/10.1021/j150664a06310.1021/j150664a063Suche in Google Scholar

[21] Pugh, R. J. (1996). Foaming, foam films, antifoaming and defoaming. Advances in Colloid and Interface Science, 64, 67–142. DOI: 10.1016/0001-8686(95)00280-4. http://dx.doi.org/10.1016/0001-8686(95)00280-410.1016/0001-8686(95)00280-4Suche in Google Scholar

[22] Rosevear, F. B. (1954). The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detengents. Journal of the American Oil Chemists’ Society, 31, 628–639. DOI: 10.1007/BF02545595. http://dx.doi.org/10.1007/BF0254559510.1007/BF02545595Suche in Google Scholar

[23] Shrestha, L. K., Shrestha, R. G., Sharma, S. C., & Aramaki, K. (2008). Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system. Journal of Colloid and Interface Science, 328, 172–179. DOI: 10.1016/j.jcis.2008.08.051. http://dx.doi.org/10.1016/j.jcis.2008.08.05110.1016/j.jcis.2008.08.051Suche in Google Scholar PubMed

[24] Strey, R., Schomäcker, R., Roux, D., Nallet, F., & Olsson, U. (1990). Dilute lamellar and L3 phases in the binary water-C12E5 system. Journal of the Chemical Society, Faraday Transactions, 86, 2253–2261. DOI: 10.1039/FT9908602253. http://dx.doi.org/10.1039/ft990860225310.1039/FT9908602253Suche in Google Scholar

Published Online: 2009-8-25
Published in Print: 2009-10-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Magnetic nano- and microparticles in biotechnology
  2. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
  3. Copper determination using ICP-MS with hexapole collision cell
  4. Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
  5. Robust stabilization of a chemical reactor
  6. Influence of production progress on the heavy metal content in flax fibers
  7. In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
  8. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
  9. Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
  10. Characterization of mechanochemically synthesized lead selenide
  11. Hydroxyapatite modified with silica used for sorption of copper(II)
  12. Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
  13. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
  14. Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
  15. Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
  16. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
  17. Gas chromatographic retention times prediction for components of petroleum condensate fraction
  18. Gas chromatography with surface ionization detection of nitro pesticides
  19. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
  20. Aqueous foam stabilized by polyoxyethylene dodecyl ether
Heruntergeladen am 16.1.2026 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0047-1/html
Button zum nach oben scrollen