Abstract
Determination of copper using inductively coupled plasma mass spectrometry (ICP-MS) suffers from polyatomic overlays originating from Na+ and Mg2+ matrix elements due to the formation of 40Ar23Na+ and 40Ar25Mg+ in the mass-to-charge ratios of 63 and 65, respectively. The collision/reaction cell technology belongs to the most modern methods used to overcome polyatomic interferences. Gas-filled collision/reaction cell can cause an additional mass bias effect influencing analytical precision of the method. In this study, the additional mass bias effect of the hexapole collision/reaction cell ICP-MS was studied on an example of n(65Cu)/n(63Cu) isotope ratio. As a result, a method for suppressing polyatomic interference on the mass-to-charge ratio of 63 and 65 was introduced and additional mass bias of the collision/reaction cell was lowered to an acceptable level.
[1] Begley, I. S., & Sharp, B. L. (1997). Characterisation and correction of instrumental bias in inductively coupled plasma quadrupole mass spectrometry for accurate measurement of lead isotope ratios. Journal of Analytical Atomic Spectrometry, 12, 395–402. DOI: 10.1039/a605078f. http://dx.doi.org/10.1039/a605078f10.1039/a605078fSuche in Google Scholar
[2] Boulyga, S. F., & Becker, J. S. (2001). ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se. Fresenius’ Journal of Analytical Chemistry, 370, 618–623. DOI: 10.1007/s002160100851. http://dx.doi.org/10.1007/s00216010085110.1007/s002160100851Suche in Google Scholar PubMed
[3] Boulyga, S. F., & Becker, J. S. (2002). Comment on Q. Xie and R. Kerrich (2002). “Isotope ratio measurement by hexapole ICP-MS: mass bias effect, precision and accuracy”. J. Anal. At. Spectrom., 17, 69. Journal of Analytical Atomic Spectrometry, 17, 965–966. DOI: 10.1039/b200033b. http://dx.doi.org/10.1039/b106417g10.1039/B200033BSuche in Google Scholar
[4] Boulyga, S. F., Dietze, H.-J., & Becker, J. S. (2001). Performance of ICP-MS with hexapole collision cell and application for determination of trace elements in bio-assays. Microchimica Acta, 137, 93–103. DOI: 10.1007/s006040170034. http://dx.doi.org/10.1007/s00604017003410.1007/s006040170034Suche in Google Scholar
[5] Chrastný, V., Komárek, M., Mihaljevič, M., & Štíchová, J. (2006). Vanadium determination in chloride matrices using ICP-MS: finding the optimum collision/reaction cell parameters for suppressing polyatomic interference. Analytical and Bioanalytical Chemistry, 385, 962–970. DOI:10.1007/s00216-006-0478-2. http://dx.doi.org/10.1007/s00216-006-0478-210.1007/s00216-006-0478-2Suche in Google Scholar PubMed
[6] Dexter, M. A., Reid, H. J., & Sharp, B. L. (2002). The effect of ion energy on reactivity and species selectivity in hexapole collision/reaction cell ICP-MS. Journal of Analytical Atomic Spectrometry, 17, 676–681. DOI: 10.1039/b205674g. http://dx.doi.org/10.1039/b205674g10.1039/b205674gSuche in Google Scholar
[7] Diemer, J., Quétel, C. R., & Taylor, P. D. P. (2002). Comparison of the performance of different ICP-MS instruments on the measurement of Cu in a water sample by ICP-IDMS. Journal of Analytical Atomic Spectrometry, 17, 1137–1142. DOI: 10.1039/b201443b. http://dx.doi.org/10.1039/b201443b10.1039/B201443BSuche in Google Scholar
[8] Heitland, P., & Köster, H. D. (2004). Fast, simple and reliable routine determination of 23 elements in urine by ICP-MS. Journal of Analytical Atomic Spectrometry, 19, 1552–1558. DOI: 10.1039/b410630j. http://dx.doi.org/10.1039/b410630j10.1039/B410630JSuche in Google Scholar
[9] Heumann, K. G., Gallus, S. M., Rädlinger, G., & Vogl, J. (1998). Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. Journal of Analytical Atomic Spectrometry, 13, 1001–1008. DOI:10.1039/a801965g. http://dx.doi.org/10.1039/a801965g10.1039/a801965gSuche in Google Scholar
[10] Mason, P. R. D., Kaspers, K., & van Bergen, M. J. (1999). Determination of sulfur isotope ratios and concentrations in water samples using ICP-MS incorporating hexapole ion optics. Journal of Analytical Atomic Spectrometry, 14, 1067–1074. DOI: 10.1039/a902037c. http://dx.doi.org/10.1039/a902037c10.1039/a902037cSuche in Google Scholar
[11] Mason, T. F. D., Wiess, D. J., Horstwood, M., Parrish, R. R., Russell, S. S., Mullane, E., & Coles, B. J. (2004). High-precision Cu and Zn isotope analysis by plasma source mass spectrometry part 1. Spectral interferences and their correction. Journal of Analytical Atomic Spectrometry, 19, 209–217. DOI: 10.1039/b306958c. http://dx.doi.org/10.1039/b306958c10.1039/b306958cSuche in Google Scholar
[12] McCurdy, E., & Woods, G. (2004). The application of collision/reaction cell inductively coupled plasma mass spectrometry to multi-element analysis in variable sample matrices, using He as a non-reactive cell gas. Journal of Analytical Atomic Spectrometry, 19, 607–615. DOI: 10.1039/b312250f. http://dx.doi.org/10.1039/b312250f10.1039/b312250fSuche in Google Scholar
[13] Tanner, S. D., Baranov, V. I., & Bandura, D. R. (2002). Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 1361–1452. DOI: 10.1016/S0584-8547(02)00069-1. http://dx.doi.org/10.1016/S0584-8547(02)00069-110.1016/S0584-8547(02)00069-1Suche in Google Scholar
[14] Vanhaecke, F., Balcaen, L., Deconinck, I., De Schrijver, I., Almeida, C. M., & Moens, L. (2003). Mass discrimination in dynamic reaction cell (DRC)-ICP-mass spectrometry. Journal of Analytical Atomic Spectrometry, 18, 1060–1065. DOI:10.1039/b303528j. http://dx.doi.org/10.1039/b303528j10.1039/b303528jSuche in Google Scholar
[15] Xie, Q., & Kerrich, R. (2002a). Isotope ratio measurement by hexapole ICP-MS: mass bias effect, precision and accuracy. Journal of Analytical Atomic Spectrometry, 17, 69–74. DOI:10.1039/b106417g. http://dx.doi.org/10.1039/b106417g10.1039/b106417gSuche in Google Scholar
[16] Xie, Q., & Kerrich, R. (2002b). Reply to S. F. Boulyga and J. S. Becker (2002). Comments on Isotope ratio measurement by hexapole ICP-MS: mass bias effect, precision and accuracy”’. J. Anal. At. Spectrom., 17, 965. Journal of Analytical Atomic Spectrometry, 17, 967–968. DOI: 10.1039/b204745b. http://dx.doi.org/10.1039/b200033b10.1039/B204745BSuche in Google Scholar
[17] Yamada, N., Takahashi, J., & Sakata, K. (2002). The effects of cell-gas impurities and kinetic energy discrimination in an octopole collision cell ICP-MS under non-thermalized conditions. Journal of Analytical Atomic Spectrometry, 17, 1213–1222. DOI:10.1039/b205416g. http://dx.doi.org/10.1039/b205416g10.1039/b205416gSuche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether