Startseite Copper determination using ICP-MS with hexapole collision cell
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Copper determination using ICP-MS with hexapole collision cell

  • Vladislav Chrastný EMAIL logo und Michael Komárek
Veröffentlicht/Copyright: 25. August 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Determination of copper using inductively coupled plasma mass spectrometry (ICP-MS) suffers from polyatomic overlays originating from Na+ and Mg2+ matrix elements due to the formation of 40Ar23Na+ and 40Ar25Mg+ in the mass-to-charge ratios of 63 and 65, respectively. The collision/reaction cell technology belongs to the most modern methods used to overcome polyatomic interferences. Gas-filled collision/reaction cell can cause an additional mass bias effect influencing analytical precision of the method. In this study, the additional mass bias effect of the hexapole collision/reaction cell ICP-MS was studied on an example of n(65Cu)/n(63Cu) isotope ratio. As a result, a method for suppressing polyatomic interference on the mass-to-charge ratio of 63 and 65 was introduced and additional mass bias of the collision/reaction cell was lowered to an acceptable level.

[1] Begley, I. S., & Sharp, B. L. (1997). Characterisation and correction of instrumental bias in inductively coupled plasma quadrupole mass spectrometry for accurate measurement of lead isotope ratios. Journal of Analytical Atomic Spectrometry, 12, 395–402. DOI: 10.1039/a605078f. http://dx.doi.org/10.1039/a605078f10.1039/a605078fSuche in Google Scholar

[2] Boulyga, S. F., & Becker, J. S. (2001). ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se. Fresenius’ Journal of Analytical Chemistry, 370, 618–623. DOI: 10.1007/s002160100851. http://dx.doi.org/10.1007/s00216010085110.1007/s002160100851Suche in Google Scholar PubMed

[3] Boulyga, S. F., & Becker, J. S. (2002). Comment on Q. Xie and R. Kerrich (2002). “Isotope ratio measurement by hexapole ICP-MS: mass bias effect, precision and accuracy”. J. Anal. At. Spectrom., 17, 69. Journal of Analytical Atomic Spectrometry, 17, 965–966. DOI: 10.1039/b200033b. http://dx.doi.org/10.1039/b106417g10.1039/B200033BSuche in Google Scholar

[4] Boulyga, S. F., Dietze, H.-J., & Becker, J. S. (2001). Performance of ICP-MS with hexapole collision cell and application for determination of trace elements in bio-assays. Microchimica Acta, 137, 93–103. DOI: 10.1007/s006040170034. http://dx.doi.org/10.1007/s00604017003410.1007/s006040170034Suche in Google Scholar

[5] Chrastný, V., Komárek, M., Mihaljevič, M., & Štíchová, J. (2006). Vanadium determination in chloride matrices using ICP-MS: finding the optimum collision/reaction cell parameters for suppressing polyatomic interference. Analytical and Bioanalytical Chemistry, 385, 962–970. DOI:10.1007/s00216-006-0478-2. http://dx.doi.org/10.1007/s00216-006-0478-210.1007/s00216-006-0478-2Suche in Google Scholar PubMed

[6] Dexter, M. A., Reid, H. J., & Sharp, B. L. (2002). The effect of ion energy on reactivity and species selectivity in hexapole collision/reaction cell ICP-MS. Journal of Analytical Atomic Spectrometry, 17, 676–681. DOI: 10.1039/b205674g. http://dx.doi.org/10.1039/b205674g10.1039/b205674gSuche in Google Scholar

[7] Diemer, J., Quétel, C. R., & Taylor, P. D. P. (2002). Comparison of the performance of different ICP-MS instruments on the measurement of Cu in a water sample by ICP-IDMS. Journal of Analytical Atomic Spectrometry, 17, 1137–1142. DOI: 10.1039/b201443b. http://dx.doi.org/10.1039/b201443b10.1039/B201443BSuche in Google Scholar

[8] Heitland, P., & Köster, H. D. (2004). Fast, simple and reliable routine determination of 23 elements in urine by ICP-MS. Journal of Analytical Atomic Spectrometry, 19, 1552–1558. DOI: 10.1039/b410630j. http://dx.doi.org/10.1039/b410630j10.1039/B410630JSuche in Google Scholar

[9] Heumann, K. G., Gallus, S. M., Rädlinger, G., & Vogl, J. (1998). Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. Journal of Analytical Atomic Spectrometry, 13, 1001–1008. DOI:10.1039/a801965g. http://dx.doi.org/10.1039/a801965g10.1039/a801965gSuche in Google Scholar

[10] Mason, P. R. D., Kaspers, K., & van Bergen, M. J. (1999). Determination of sulfur isotope ratios and concentrations in water samples using ICP-MS incorporating hexapole ion optics. Journal of Analytical Atomic Spectrometry, 14, 1067–1074. DOI: 10.1039/a902037c. http://dx.doi.org/10.1039/a902037c10.1039/a902037cSuche in Google Scholar

[11] Mason, T. F. D., Wiess, D. J., Horstwood, M., Parrish, R. R., Russell, S. S., Mullane, E., & Coles, B. J. (2004). High-precision Cu and Zn isotope analysis by plasma source mass spectrometry part 1. Spectral interferences and their correction. Journal of Analytical Atomic Spectrometry, 19, 209–217. DOI: 10.1039/b306958c. http://dx.doi.org/10.1039/b306958c10.1039/b306958cSuche in Google Scholar

[12] McCurdy, E., & Woods, G. (2004). The application of collision/reaction cell inductively coupled plasma mass spectrometry to multi-element analysis in variable sample matrices, using He as a non-reactive cell gas. Journal of Analytical Atomic Spectrometry, 19, 607–615. DOI: 10.1039/b312250f. http://dx.doi.org/10.1039/b312250f10.1039/b312250fSuche in Google Scholar

[13] Tanner, S. D., Baranov, V. I., & Bandura, D. R. (2002). Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 1361–1452. DOI: 10.1016/S0584-8547(02)00069-1. http://dx.doi.org/10.1016/S0584-8547(02)00069-110.1016/S0584-8547(02)00069-1Suche in Google Scholar

[14] Vanhaecke, F., Balcaen, L., Deconinck, I., De Schrijver, I., Almeida, C. M., & Moens, L. (2003). Mass discrimination in dynamic reaction cell (DRC)-ICP-mass spectrometry. Journal of Analytical Atomic Spectrometry, 18, 1060–1065. DOI:10.1039/b303528j. http://dx.doi.org/10.1039/b303528j10.1039/b303528jSuche in Google Scholar

[15] Xie, Q., & Kerrich, R. (2002a). Isotope ratio measurement by hexapole ICP-MS: mass bias effect, precision and accuracy. Journal of Analytical Atomic Spectrometry, 17, 69–74. DOI:10.1039/b106417g. http://dx.doi.org/10.1039/b106417g10.1039/b106417gSuche in Google Scholar

[16] Xie, Q., & Kerrich, R. (2002b). Reply to S. F. Boulyga and J. S. Becker (2002). Comments on Isotope ratio measurement by hexapole ICP-MS: mass bias effect, precision and accuracy”’. J. Anal. At. Spectrom., 17, 965. Journal of Analytical Atomic Spectrometry, 17, 967–968. DOI: 10.1039/b204745b. http://dx.doi.org/10.1039/b200033b10.1039/B204745BSuche in Google Scholar

[17] Yamada, N., Takahashi, J., & Sakata, K. (2002). The effects of cell-gas impurities and kinetic energy discrimination in an octopole collision cell ICP-MS under non-thermalized conditions. Journal of Analytical Atomic Spectrometry, 17, 1213–1222. DOI:10.1039/b205416g. http://dx.doi.org/10.1039/b205416g10.1039/b205416gSuche in Google Scholar

Published Online: 2009-8-25
Published in Print: 2009-10-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Magnetic nano- and microparticles in biotechnology
  2. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
  3. Copper determination using ICP-MS with hexapole collision cell
  4. Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
  5. Robust stabilization of a chemical reactor
  6. Influence of production progress on the heavy metal content in flax fibers
  7. In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
  8. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
  9. Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
  10. Characterization of mechanochemically synthesized lead selenide
  11. Hydroxyapatite modified with silica used for sorption of copper(II)
  12. Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
  13. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
  14. Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
  15. Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
  16. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
  17. Gas chromatographic retention times prediction for components of petroleum condensate fraction
  18. Gas chromatography with surface ionization detection of nitro pesticides
  19. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
  20. Aqueous foam stabilized by polyoxyethylene dodecyl ether
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0057-z/html
Button zum nach oben scrollen