Characterization of mechanochemically synthesized lead selenide
-
Marcela Achimovičová
, Nina Daneu
Abstract
Mechanochemical synthesis of lead selenide PbSe nanocrystals was performed by high-energy milling of lead and selenium powders in a planetary ball mill. The structure properties of synthesized lead selenide were characterized by XRD analysis that confirmed crystalline nature of PbSe nanocrystals. Calculated average size of PbSe crystallites was 37 nm. The methods of particle size distribution analysis, specific surface area measurement, SEM and TEM were used for the characterization of surface and morphology of PbSe nanocrystals. SEM analysis revealed agglomerates of PbSe particles. However, HRTEM analysis confirmed perfect stoichiometric PbSe cubes with NaCl structure as well. UV-VIS-NIR spectrophotometry was used to confirm the blue shift of the small particles occurring in the powder product obtained by the mechanochemical synthesis.
[1] Aitken, R. J., Creely, K. S., & Tran, C. L. (2004). Nanoparticles: An occupational hygiene review. HSE Research Report 274. London: HSE Books. Suche in Google Scholar
[2] BaláŽ, P., Boldižárová, E., Godočíová, E., & Briančin, J. (2003). Mechanochenical route for sulphide nanoparticle preparation. Materials Letters, 57, 1585–1589. DOI: 10.1016/S0167-577X(02)01037-6. http://dx.doi.org/10.1016/S0167-577X(02)01037-610.1016/S0167-577X(02)01037-6Suche in Google Scholar
[3] Baláž, P. (2008). Mechanochemistry in nanoscience and minerals engineering. Berlin, Heidelberg: Springer. Suche in Google Scholar
[4] Chen, M., Xie, Y., Lu, J., Zhu, Y., & Qian, Y. (2001). A novel two step radiation route to PbSe crystalline nanorods. Journal of Materials Chemistry, 11, 518–520. DOI:10.1039/b005891m. http://dx.doi.org/10.1039/b005891m10.1039/b005891mSuche in Google Scholar
[5] Godočíová, E., Baláž, P., Gock, E., Choi, W. S., & Kim, B. S. (2006). Mechanochemical synthesis of the nanocrystalline semiconductors in an industrial mill. Powder Technology, 164, 147–152. DOI: 10.1016/j.powtec.2006.03.021. http://dx.doi.org/10.1016/j.powtec.2006.03.02110.1016/j.powtec.2006.03.021Suche in Google Scholar
[6] Juhász, A. Z., & Opoczky, L. (1990). Mechanical activation of minerals by grinding: Pulverizing and morphology of particles. Chichester: Ellis Horwood. Suche in Google Scholar
[7] Jun, Y., Koo, J., & Cheon, J. (2000). One-step synthesis of size tuned zinc selenide quantum dots via a temperature controlled molecular precursor approach. Chemical Communications, 2000, 1243–1244. DOI: 10.1039/b002983l. http://dx.doi.org/10.1039/b002983l10.1039/b002983lSuche in Google Scholar
[8] Khanna, P. K., Subbarao, V. V. V. S., Wagh, M., Jadhav, P., & Patil, K. R. (2005). Synthesis of fine PbE (E=S, Se) powder from direct in situ reduction of sulphur or selenium. Materials Chemistry and Physics, 93, 91–94. DOI: 10.1016/j.matchemphys.2005.02.025. http://dx.doi.org/10.1016/j.matchemphys.2005.02.02510.1016/j.matchemphys.2005.02.025Suche in Google Scholar
[9] Li, Y., Ding, Y., Qian, Y., Zhang, Y., & Yang, L. (1998). A solvothermal elemental reaction to produce nanocrystalline ZnSe. Inorganic Chemistry, 37, 2844–2845. DOI:10.1021/ic9800637. http://dx.doi.org/10.1021/ic980063710.1021/ic9800637Suche in Google Scholar
[10] Liao, M. C. H., Chang, Y. H., Chen Y. F., Hsu, J. W., Lin, J. M., & Chou, W. C. (1997). Fabrication of ZnSe quantum dots under Volmer-Weber mode by metalorganic chemical vapor deposition. Applied Physics Letters, 70, 2256–2258. DOI: 10.10633/1.118831. http://dx.doi.org/10.1063/1.118831Suche in Google Scholar
[11] McCormick, P. G., Tsuzuki, T., Robinson, J. S., & Ding, J. (2001). Nanopowders synthesized by mechanochemical processing. Advanced Materials, 13, 1008–1010. DOI: 10.1002/1521-4095(200107)13:12/13〈1008:AID-ADMA1008〉3.0.CO;2-Q. http://dx.doi.org/10.1002/1521-4095(200107)13:12/13<1008::AID-ADMA1008>3.0.CO;2-Q10.1002/1521-4095(200107)13:12/13<1008::AID-ADMA1008>3.0.CO;2-QSuche in Google Scholar
[12] Murray, C. B., Sun, S., Gaschler, W., Doyle, H., Betley, T. A., & Kagan, C. R. (2001). Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM Journal of Research and Development, 45, 47–56. http://dx.doi.org/10.1147/rd.451.004710.1147/rd.451.0047Suche in Google Scholar
[13] Ohtani, T., Ikeda, K., Hayashi, Y., & Fukui, Y. (2007). Mechanochemical preparation of palladium chalcogenides. Materials Research Bulletin, 42, 1930–1934. DOI: 10.1016/j.materresbull.2006.12.012. http://dx.doi.org/10.1016/j.materresbull.2006.12.01210.1016/j.materresbull.2006.12.012Suche in Google Scholar
[14] Opoczky, L. (1977). Fine grinding and agglomeration of silicates. Powder Technology, 17, 1–7. DOI: 10.1016/0032-5910(77)85037-7. http://dx.doi.org/10.1016/0032-5910(77)85037-710.1016/0032-5910(77)85037-7Suche in Google Scholar
[15] Poudel, B., Wang, W. Z., Wang, D. Z., Huang, J. Y., & Ren, Z. F. (2006). Shape evolution of lead telluride and selenide nanostructures under different hydrothermal synthesis conditions. Journal of Nanoscience and Nanotechnology, 6, 1050–1053. DOI: 10.1166/jnn.2006.163. http://dx.doi.org/10.1166/jnn.2006.16310.1166/jnn.2006.163Suche in Google Scholar
[16] Pourghahramani, P., & Forssberg, E. (2006). Microstructure characterization of mechanically activated hematite using XRD line broadening. International Journal of Mineral Processing, 79, 106–119. DOI: 10.1016/j.minpro.2006.02.001. http://dx.doi.org/10.1016/j.minpro.2006.02.00110.1016/j.minpro.2006.02.001Suche in Google Scholar
[17] Rumpf, H. (1962). The strength of granules and agglomerates. New York: John Wiley. Suche in Google Scholar
[18] Sashchiuk, A., Amirav, L., Bashouti, M., Krueger, M., Sivan, U., & Lifshitz, E. (2004). PbSe nanocrystal assemblies: Synthesis and structural, optical, and electrical characterization. Nano Letters, 4, 159–165. DOI: 10.1021/nl0345116. http://dx.doi.org/10.1021/nl034511610.1021/nl0345116Suche in Google Scholar
[19] Seoudi, R., Elokr, M. M., Shabaka, A. A., & Sobhi, A. (2008). Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle. Physica B: Condensed Matter, 403, 152–158. DOI: 10.1016/j.physb.2007.08.095. http://dx.doi.org/10.1016/j.physb.2007.08.09510.1016/j.physb.2007.08.095Suche in Google Scholar
[20] Tsuzuki, T., & McCormick, P. G. (1997). Synthesis of CdS quantum dots by mechanochemical reaction. Applied Physics A: Materials Science & Processing, 65, 607–609. DOI: 10.1007/s003390050629. http://dx.doi.org/10.1007/s00339005062910.1007/s003390050629Suche in Google Scholar
[21] Tsuzuki, T., & McCormick, P. G. (1999). Mechanochemical synthesis of metal sulphide nanoparticles. NanoStructured Materials, 12, 75–78. DOI: 10.1016/S0965-9773(99)00069-0. http://dx.doi.org/10.1016/S0965-9773(99)00069-010.1016/S0965-9773(99)00069-0Suche in Google Scholar
[22] Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from field aluminium and wolfram. Acta Metallurgica, 1, 22–31. http://dx.doi.org/10.1016/0001-6160(53)90006-610.1016/0001-6160(53)90006-6Suche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether