Home Life Sciences Magnetic nano- and microparticles in biotechnology
Article
Licensed
Unlicensed Requires Authentication

Magnetic nano- and microparticles in biotechnology

  • Ivo Safarik EMAIL logo and Mirka Safarikova
Published/Copyright: August 25, 2009
Become an author with De Gruyter Brill

Abstract

Both synthetic and biologically produced magnetic nano- and microparticles exhibit several types of responses to external magnetic field which have been already employed in various areas of biosciences, biotechnology, medicine, environmental technology, etc. This short review shows selected important biotechnological applications of magnetic particles, and the biological processes leading to biogenic magnetic particles formation.

[1] Akgöl, S., Kaçar, Y., Denizli, A., & Arica, M. Y. (2001). Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres. Food Chemistry, 74, 281–288. DOI: 10.1016/S0308-8146(01)00150-9. http://dx.doi.org/10.1016/S0308-8146(01)00150-910.1016/S0308-8146(01)00150-9Search in Google Scholar

[2] Antequera, Y. S., Mykhaylyk, O., Hammerschmid, E., & Plank, C. (2007). Magselectofection: Combined magnetic cell separation and magnetofection. Human Gene Therapy, 18, 1048–1048. DOI: 10.1089/hum.2007.1029. 10.1089/hum.2007.1029Search in Google Scholar

[3] Arica, M. Y., Yavuz, H., Patir, S., & Denizli, A. (2000). Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor. Journal of Molecular Catalysis B: Enzymatic, 11, 127–138. DOI: 10.1016/S1381-1177(00)00223-X. http://dx.doi.org/10.1016/S1381-1177(00)00223-X10.1016/S1381-1177(00)00223-XSearch in Google Scholar

[4] Bahar, T., & Celebi, S. S. (1998). Characterization of glucoamylase immobilized on magnetic poly(styrene) particles. Enzyme and Microbial Technology, 23, 301–304. DOI: 10.1016/S0141-0229(98)00048-9. http://dx.doi.org/10.1016/S0141-0229(98)00048-910.1016/S0141-0229(98)00048-9Search in Google Scholar

[5] Bazylinski, D. A., Frankel, R. B., & Konhauser, K. O. (2007). Modes of biomineralization of magnetite by microbes. Geomicrobiology Journal, 24, 465–475. DOI: 10.1080/01490450 701572259. Search in Google Scholar

[6] Bazylinski, D. A., & Schübbe, S. (2007). Controlled biomineralization by and applications of magnetotactic bacteria. Advances in Applied Microbiology, 62, 21–62. DOI: 10.1016/S0065-2164(07)62002-4. http://dx.doi.org/10.1016/S0065-2164(07)62002-410.1016/S0065-2164(07)62002-4Search in Google Scholar

[7] Berensmeier, S. (2006). Magnetic particles for the separation and purification of nucleic acids. Applied Microbiology and Biotechnology, 73, 495–504. DOI: 10.1007/s00253-006-0675-0. http://dx.doi.org/10.1007/s00253-006-0675-010.1007/s00253-006-0675-0Search in Google Scholar

[8] Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., Sanyal, M., & Sastry, M. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2, 135–141. DOI: 10.1002/smll.200500180. http://dx.doi.org/10.1002/smll.20050018010.1002/smll.200500180Search in Google Scholar

[9] Bilkova, Z., Slovakova, M., Lycka, A., Horak, D., Lenfeld, J., Turkova, J., & Churacek, J. (2002). Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. Journal of Chromatography B, 770, 25–34. DOI: 10.1016/S0378-4347(01)00439-X. http://dx.doi.org/10.1016/S0378-4347(01)00439-X10.1016/S0378-4347(01)00439-XSearch in Google Scholar

[10] Bruno, L. M., Coelho, J. S., Melo, E. H. M., & Lima, J. L. (2005). Characterization of Mucor miehei lipase immobilized on polysiloxane-polyvinyl alcohol magnetic particles. World Journal of Microbiology & Biotechnology, 21, 189–192. DOI: 10.1007/s11274-004-3321-y. http://dx.doi.org/10.1007/s11274-004-3321-y10.1007/s11274-004-3321-ySearch in Google Scholar

[11] Coleman, D. J., Chick, K. E., & Nye, K. J. (1995). An evaluation of immunomagnetic separation for the detection of salmonellas in raw chicken carcasses. Letters in Applied Microbiology, 21, 152–154. DOI: 10.1111/j.1472-765X.1995.tb01029.x. http://dx.doi.org/10.1111/j.1472-765X.1995.tb01029.x10.1111/j.1472-765X.1995.tb01029.xSearch in Google Scholar PubMed

[12] De Cuyper, M., De Meulenaer, B., Van der Meeren, P., & Vanderdeelen, J. (1995). Enzymatic activity of cytochrome c-oxidase inserted into magnetoliposomes differing in surface charge density. Biocatalysis and Biotransformation, 13, 77–87. DOI: 10.3109/10242429509015214. http://dx.doi.org/10.3109/1024242950901521410.3109/10242429509015214Search in Google Scholar

[13] Demirel, D., Ozdural, A. R., & Mutlu, M. (2004). Performance of immobilized Pectinex Ultra SP-L on magnetic duolitepolystyrene composite particles — Part 1: A batch reactor study. Journal of Food Engineering, 64, 417–421. DOI: 10.1016/j.jfoodeng.2003.09.018. http://dx.doi.org/10.1016/j.jfoodeng.2003.09.01810.1016/j.jfoodeng.2003.09.018Search in Google Scholar

[14] Duffy, G., Sheridan, J. J., Hofstra, H., McDowall, D. A., & Blair, I. S. (1997). A comparison of immunomagnetic and surface adhesion immunofluorescent techniques for the rapid detection of Listeria monocytogenes and Listeria innocua in meat. Letters in Applied Microbiology, 24, 445–450. DOI: 10.1046/j.1472-765X.1997.00139.x. http://dx.doi.org/10.1046/j.1472-765X.1997.00139.x10.1046/j.1472-765X.1997.00139.xSearch in Google Scholar

[15] Dunnill, P., & Lilly, M. D. (1974). Purification of enzymes using magnetic bio-affinity materials. Biotechnology and Bioengineering, 16, 987–990. DOI: 10.1002/bit.260160710. http://dx.doi.org/10.1002/bit.26016071010.1002/bit.260160710Search in Google Scholar

[16] Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., Shafi, K. V. P. M., Ulman, A., Cowman, M., & Gross, R. A. (2003). Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. Journal of the American Chemical Society, 125, 1684–1685. DOI: 10.1021/ja021223n. http://dx.doi.org/10.1021/ja021223n10.1021/ja021223nSearch in Google Scholar

[17] Ennis, M. P., & Wisdom, G. B. (1991). A magnetizable solid phase for enzyme extraction. Applied Biochemistry and Biotechnology, 30, 155–164. DOI: 10.1007/BF02921683. http://dx.doi.org/10.1007/BF0292168310.1007/BF02921683Search in Google Scholar

[18] Franzreb, M., Siemann-Herzberg, M., Hobley, T. J., & Thomas, O. R. T. (2006). Protein purification using magnetic adsorbent particles. Applied Microbiology and Biotechnology, 70, 505–516. DOI: 10.1007/s00253-006-0344-3. http://dx.doi.org/10.1007/s00253-006-0344-310.1007/s00253-006-0344-3Search in Google Scholar

[19] Grant, I. R., Pope, C. M., O’Riordan, L. M., Ball, H. J., & Rowe, M. T. (2000). Improved detection of Mycobacterium avium subsp. paratuberculosis in milk by immunomagnetic PCR. Veterinary Microbiology, 77, 369–378. DOI: 10.1016/S0378-1135(00)00322-9. http://dx.doi.org/10.1016/S0378-1135(00)00322-910.1016/S0378-1135(00)00322-9Search in Google Scholar

[20] Guo, Z., Bai, S., & Sun, Y. (2003). Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme and Microbial Technology, 32, 776–782. DOI: 10.1016/S0141-0229(03)00051-6. 10.1016/S0141-0229(03)00051-6Search in Google Scholar

[21] Hendrix, P. G., Hoylaerts, M. F., Nouwen, E. J., Van de Voorde, A., & De Broe, M. E. (1992). Magnetic beads in suspension enable a rapid and sensitive immunodetection of human placental alkaline phosphatase. European Journal of Clinical Chemistry and Clinical Biochemistry, 30, 343–347. 10.1515/cclm.1992.30.6.343Search in Google Scholar PubMed

[22] Hirschbein, B. L., & Whitesides, G. M. (1982). Affinity separation of enzymes from mixtures containing suspended solids: Comparisons of magnetic and nonmagnetic techniques. Applied Biochemistry and Biotechnology, 7, 157–176. DOI: 10.1007/BF02798294. http://dx.doi.org/10.1007/BF0279829410.1007/BF02798294Search in Google Scholar

[23] Horak, D., Rittich, B., Safar, J., Spanova, A., Lenfeld, J., & Benes, M. J. (2001). Properties of RNase A immobilized on magnetic poly(2-hydroxyethyl methacrylate) microspheres. Biotechnology Progress, 17, 447–452. DOI: 10.1021/bp0100171. http://dx.doi.org/10.1021/bp010017110.1021/bp0100171Search in Google Scholar

[24] Hubbuch, J. J., & Thomas, O. R. T. (2002). High-gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnology and Bioengineering, 79, 301–313. DOI: 10.1002/bit.10285. http://dx.doi.org/10.1002/bit.1028510.1002/bit.10285Search in Google Scholar

[25] Chapman, P. A., & Cudjoe, K. S. (2001). Evaluation of Beadretriever™, an automated system for concentration of Escherichia coli O157 from enrichment cultures by immunomagnetic separation. Journal of Rapid Methods and Automation in Microbiology, 9, 203–214. DOI: 10.1111/j.1745-4581.2001.tb00243.x. http://dx.doi.org/10.1111/j.1745-4581.2001.tb00243.x10.1111/j.1745-4581.2001.tb00243.xSearch in Google Scholar

[26] Chapman, P. A., Ellin, M., & Ashton, R. (2001). A comparison of immunomagnetic separation and culture, RevealTM and VIP™ for the detection of E. coli O157 in enrichment cultures of naturally-contaminated raw beef, lamb and mixed meat products. Letters in Applied Microbiology, 32, 171–175. DOI: 10.1046/j.1472-765x.2001.00883.x. http://dx.doi.org/10.1046/j.1472-765x.2001.00883.x10.1046/j.1472-765x.2001.00883.xSearch in Google Scholar

[27] Inada, Y., Matsuswma, A., Kodera, Y., & Nishimura, H. (1990). Polyethylene glycol (PEG)-protein conjugates: Application to biomedical and biotechnological processes. Journal of Bioactive and Compatible Polymers, 5, 343–364. DOI: 10.1177/088391159000500309. http://dx.doi.org/10.1177/08839115900050030910.1177/088391159000500309Search in Google Scholar

[28] Jang, K.-H., Song, K.-B., Park, B.-S., Kim, C. H., Chung, B. H., Choue, R. W., Lee, K. S., Lee, C., Chun, U.-H., & Rhee, S. K. (2001). Levan production by use of the recombinant levansucrase immobilized on titanium-activated magnetite. Process Biochemistry, 37, 339–343. DOI: 10.1016/S0032-9592(01)00215-1. http://dx.doi.org/10.1016/S0032-9592(01)00215-110.1016/S0032-9592(01)00215-1Search in Google Scholar

[29] Karpíšková, R. & Holasová, M. (1999). The use of immunomagnetic separation in detection of Salmonella and Listeria from foodstuffs. Veterinární Medicína, 44, 225–228. (in Czech) Search in Google Scholar

[30] Knight, K., Pimentel, M. D., de Morais, M. M. C., Ledingham, W. M., de Lima Filho, J. L., & Maia, M. D. (2000). Immobilization of lipase from Fusarium solani FS1. Brazilian Journal of Microbiology, 31, 220–222. DOI: 10.1590/S1517-83822000000300013. http://dx.doi.org/10.1590/S1517-8382200000030001310.1590/S1517-83822000000300013Search in Google Scholar

[31] Lamoureux, M., MacKay, A., Messier, S., Fliss, I., Blais, B. W., Holley, R. A., & Simard, R. E. (1997). Detection of Campylobacter jejuni in food and poultry viscera using immunomagnetic separation and microtitre hybridization. Journal of Applied Microbiology, 83, 641–651. DOI: 10.1046/j.1365-2672.1997.00273.x. http://dx.doi.org/10.1046/j.1365-2672.1997.00273.x10.1046/j.1365-2672.1997.00273.xSearch in Google Scholar PubMed

[32] Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. V., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064–2110. DOI: 10.1021/cr068445e. http://dx.doi.org/10.1021/cr068445e10.1021/cr068445eSearch in Google Scholar PubMed

[33] Liao, M. H., & Chen, D. H. (2001). Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnology Letters, 23, 1723–1727. DOI: 10.1023/A:1012485221802. http://dx.doi.org/10.1023/A:101248522180210.1023/A:1012485221802Search in Google Scholar

[34] Matsunaga, T., Okamura, Y., & Tanaka, T. (2004). Biotechnological application of nano-scale engineered bacterial magnetic particles. Journal of Materials Chemistry, 14, 2099–2105. DOI: 10.1039/b404844j. http://dx.doi.org/10.1039/b404844j10.1039/b404844jSearch in Google Scholar

[35] Megens, M., & Prins, M. (2005). Magnetic biochips: a new option for sensitive diagnostics. Journal of Magnetism and Magnetic Materials, 293, 702–708. DOI: 10.1016/j.jmmm.2005.02.046. http://dx.doi.org/10.1016/j.jmmm.2005.02.04610.1016/j.jmmm.2005.02.046Search in Google Scholar

[36] Meyer, A., Hansen, D. B., Gomes, C. S. G., Hobley, T. J., Thomas, O. R. T., & Franzreb, M. (2005). Demonstration of a strategy for product purification by high-gradient magnetic fishing: Recovery of superoxide dismutase from unconditioned whey. Biotechnology Progress, 21, 244–254. DOI: 10.1021/bp049656c. http://dx.doi.org/10.1021/bp049656c10.1021/bp049656cSearch in Google Scholar

[37] Mosbach, K., & Andersson, L. (1977). Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature, 270, 259–261. DOI: 10.1038/270259a0. http://dx.doi.org/10.1038/270259a010.1038/270259a0Search in Google Scholar

[38] Mosiniewicz-Szablewska, E., Safarikova, M., & Safarik, I. (2007). Magnetic studies of ferrofluid-modified spruce sawdust. Journal of Physics D: Applied Physics, 40, 6490–6496. DOI: 10.1088/0022-3727/40/21/003. http://dx.doi.org/10.1088/0022-3727/40/21/00310.1088/0022-3727/40/21/003Search in Google Scholar

[39] Nishiya, Y., Hibi, T., & Oda, J. L. (2002). A purification method of the diagnostic enzyme Bacillus uricase using magnetic beads and non-specific protease. Protein Expression and Purification, 25, 426–429. DOI: 10.1016/S1046-5928(02)00022-0. http://dx.doi.org/10.1016/S1046-5928(02)00022-010.1016/S1046-5928(02)00022-0Search in Google Scholar

[40] Odabasi, M., & Denizli, A. (2004). Cibacron blue F3GA incorporated magnetic poly(2-hydroxyethyl methacrylate) beads for lysozyme adsorption. Journal of Applied Polymer Science, 93, 719–725. DOI 10.1002/app.20485. http://dx.doi.org/10.1002/app.2048510.1002/app.20485Search in Google Scholar

[41] Olsvik, O., Popovic, T., Skjerve, E., Cudjoe, K. S., Hornes, E., Ugelstad, J., & Uhlen, M. (1994). Magnetic separation techniques in diagnostic microbiology. Clinical Microbiology Reviews, 7, 43–54. 10.1128/CMR.7.1.43Search in Google Scholar

[42] Radu, S., Ling, O.W., Rusul, G., Karim, M. I. A., & Nishibuchi, M. (2001). Detection of Escherichia coli O157: H7 by multiplex PCR and their characterization by plasmid profiling, antimicrobial resistance, RAPD and PFGE analyses. Journal of Microbiological Methods, 46, 131–139. DOI: 10.1016/S0167-7012(01)00269-X. http://dx.doi.org/10.1016/S0167-7012(01)00269-X10.1016/S0167-7012(01)00269-XSearch in Google Scholar

[43] Ripabelli, G., Sammarco, M. L., Ruberto, A., Iannitto, G., & Grasso, G. M. (1997). Immunomagnetic separation and conventional culture procedure for detection of naturally occurring Salmonella in raw pork sausages and chicken meat. Letters in Applied Microbiology, 24, 493–497. DOI: 10.1046/j.1472-765X.1997.00159.x. http://dx.doi.org/10.1046/j.1472-765X.1997.00159.x10.1046/j.1472-765X.1997.00159.xSearch in Google Scholar

[44] Safarik, I., Lunackova, P., Mosiniewicz-Szablewska, E., Weyda, F., & Safarikova, M. (2007a). Adsorption of water-soluble organic dyes on ferrofluid-modified sawdust. Holzforschung, 61, 247–253. DOI: 10.1515/HF.2007.060. http://dx.doi.org/10.1515/HF.2007.06010.1515/HF.2007.060Search in Google Scholar

[45] Safarik, I., Rego, L. F. T., Borovska, M., Mosiniewicz-Szablewska, E., Weyda, F., & Safarikova, M. (2007b). New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme and Microbial Technology, 40, 1551–1556. DOI: 10.1016/j.enzmictec.2006.10.034. http://dx.doi.org/10.1016/j.enzmictec.2006.10.03410.1016/j.enzmictec.2006.10.034Search in Google Scholar

[46] Safarik, I., Sabatkova, Z., Tokar, O., & Safarikova, M. (2007c). Magnetic cation exchange isolation of lysozyme from native hen egg white. Food Technology and Biotechnology, 45, 355–359. Search in Google Scholar

[47] Safarik, I., & Safarikova, M. (1993). Batch isolation of hen egg white lysozyme with magnetic chitin. Journal of Biochemical and Biophysical Methods, 27, 327–330. DOI: 10.1016/0165-022X(93)90013-E. http://dx.doi.org/10.1016/0165-022X(93)90013-E10.1016/0165-022X(93)90013-ESearch in Google Scholar

[48] Safarik, I., & Safarikova, M. (1997). Overview of magnetic separations used in biochemical and biotechnological applications. In U. Hafeli, W. Schutt, J. Teller, & M. Zborowski (Eds.), Scientific and clinical applications of magnetic carriers (pp. 323–340). New York, London: Plenum Press. Search in Google Scholar

[49] Safarik, I., & Safarikova, M. (1999). Use of magnetic techniques for the isolation of cells. Journal of Chromatography B, 722, 33–53. DOI: 10.1016/S0378-4347(98)00338-7. http://dx.doi.org/10.1016/S0378-4347(98)00338-710.1016/S0378-4347(98)00338-7Search in Google Scholar

[50] Safarik, I., & Safarikova, M. (2002). Magnetic nanoparticles and biosciences. Monatshefte für Chemie, 133, 737–759. DOI: 10.1007/s007060200047. 10.1007/s007060200047Search in Google Scholar

[51] Safarik, I., & Safarikova, M. (2004). Magnetic techniques for the isolation and purification of proteins and peptides. Bio-Magnetic Research and Technology, 2, 7. DOI: 10.1186/1477-044X-2-7. http://dx.doi.org/10.1186/1477-044X-2-710.1186/1477-044X-2-7Search in Google Scholar

[52] Safarik, I., & Safarikova, M. (2007). Magnetically modified microbial cells: A new type of magnetic adsorbents. China Particuology, 5, 19–25. DOI: 10.1016/j.cpart.2006.12.003. http://dx.doi.org/10.1016/j.cpart.2006.12.00310.1016/j.cpart.2006.12.003Search in Google Scholar

[53] Safarik, I., Safarikova, M., & Forsythe, S. J. (1995). The application of magnetic separations in applied microbiology. Journal of Applied Bacteriology, 78, 575–585. DOI: 10.1111/j.1365-2672.1995.tb03102.x. 10.1111/j.1365-2672.1995.tb03102.xSearch in Google Scholar

[54] Sakai, Y., Tamiya, Y., & Takahashi, F. (1994). Enhancement of ethanol formation by immobilized yeast containing iron powder or Ba-ferrite due to eddy current or hysteresis. Journal of Fermentation and Bioengineering, 77, 169–172. DOI: 10.1016/0922-338X(94)90318-2. http://dx.doi.org/10.1016/0922-338X(94)90318-210.1016/0922-338X(94)90318-2Search in Google Scholar

[55] Schillinger, U., Brill, T., Rudolph, C., Huth, S., Gersting, S., Krotz, F., Hirschberger, J., Bergemann, C., & Plank, C. (2005). Advances in magnetofection — magnetically guided nucleic acid delivery. Journal of Magnetism and Magnetic Materials, 293, 501–508. DOI: 10.1016/j.jmmm.2005.01.032. http://dx.doi.org/10.1016/j.jmmm.2005.01.03210.1016/j.jmmm.2005.01.032Search in Google Scholar

[56] Sinclair, B. (1998). To bead or not to bead: Applications of magnetic bead technology. Scientist, 12(13), 17–23. Search in Google Scholar

[57] Takahashi, F., Sakai, Y., & Mizutani, Y. (1997). Immobilized enzyme reaction controlled by magnetic heating: γ-Fe2O3-loaded thermosensitive polymer gels consisting of N-isopropylacrylamide and acrylamide. Journal of Fermentation and Bioengineering, 83, 152–156. DOI: 10.1016/S0922-338X(97)83574-X. http://dx.doi.org/10.1016/S0922-338X(97)83574-X10.1016/S0922-338X(97)83574-XSearch in Google Scholar

[58] Tatsumi, K., Wada, S., & Ichikawa, H. (1996). Removal of chlorophenols from wastewater by immobilized horseradish peroxidase. Biotechnology and Bioengineering, 51, 126–130. DOI: 10.1002/(SICI)1097-0290(19960705)51:1〈126::AIDBIT15〉 3.0.CO;2-O. http://dx.doi.org/10.1002/(SICI)1097-0290(19960705)51:1<126::AID-BIT15>3.0.CO;2-O10.1002/(SICI)1097-0290(19960705)51:1<126::AID-BIT15>3.0.CO;2-OSearch in Google Scholar

[59] Tong, X. D., Xue, B., & Sun, Y. (2001). A novel magnetic affinity support for protein adsorption and purification. Biotechnology Progress, 17, 134–139. DOI: 10.1021/bp000134g. http://dx.doi.org/10.1021/bp000134g10.1021/bp000134gSearch in Google Scholar

[60] Wang, S. X., Bae, S. Y., Li, G. X., Sun, S. H., White, R. L., Kemp, J. T., & Webb, C. D. (2005). Towards a magnetic microarray for sensitive diagnostics. Journal of Magnetism and Magnetic Materials, 293, 731–736. DOI: 10.1016/j.jmmm.2005.02.054. http://dx.doi.org/10.1016/j.jmmm.2005.02.05410.1016/j.jmmm.2005.02.054Search in Google Scholar

[61] Wang, S. X., & Li, G. (2008). Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. IEEE Transactions on Magnetics, 44, 1687–1702. DOI: 10.1109/TMAG.2008.920962. http://dx.doi.org/10.1109/TMAG.2008.92096210.1109/TMAG.2008.920962Search in Google Scholar

[62] Yang, C. L., Guan, Y. P., Xing, J. M., & Liu, H. Z. (2006). Development of superparamagnetic functional carriers and application for affinity separation of subtilisin Carlsberg. Polymer, 47, 2299–2304. DOI: 10.1016/j.polymer.2006.02.013. http://dx.doi.org/10.1016/j.polymer.2006.02.01310.1016/j.polymer.2006.02.013Search in Google Scholar

[63] Yang, C. L., Xing, J. M., Guan, Y. P., & Liu, H. Z. (2006). Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth. Applied Microbiology and Biotechnology, 72, 616–622. DOI: 10.1007/s00253-006-0484-5. http://dx.doi.org/10.1007/s00253-006-0484-510.1007/s00253-006-0484-5Search in Google Scholar

[64] Yavuz, H., Denizli, A., Gungunes, H., Safarikova, M., & Safarik, I. (2006). Biosorption of mercury on magnetically modified yeast cells. Separation and Purification Technology, 52, 253–260. DOI: 10.1016/j.seppur.2006.05.001. http://dx.doi.org/10.1016/j.seppur.2006.05.00110.1016/j.seppur.2006.05.001Search in Google Scholar

[65] Yu, L. S. L., Uknalis, J., & Tu, S. I. (2001). Immunomagnetic separation methods for the isolation of Campylobacter jejuni from ground poultry meats. Journal of Immunological Methods, 256, 11–18. DOI: 10.1016/S0022-1759(01)00372-6. http://dx.doi.org/10.1016/S0022-1759(01)00372-610.1016/S0022-1759(01)00372-6Search in Google Scholar

Published Online: 2009-8-25
Published in Print: 2009-10-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Magnetic nano- and microparticles in biotechnology
  2. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
  3. Copper determination using ICP-MS with hexapole collision cell
  4. Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
  5. Robust stabilization of a chemical reactor
  6. Influence of production progress on the heavy metal content in flax fibers
  7. In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
  8. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
  9. Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
  10. Characterization of mechanochemically synthesized lead selenide
  11. Hydroxyapatite modified with silica used for sorption of copper(II)
  12. Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
  13. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
  14. Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
  15. Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
  16. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
  17. Gas chromatographic retention times prediction for components of petroleum condensate fraction
  18. Gas chromatography with surface ionization detection of nitro pesticides
  19. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
  20. Aqueous foam stabilized by polyoxyethylene dodecyl ether
Downloaded on 16.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0054-2/html
Scroll to top button