Abstract
Both synthetic and biologically produced magnetic nano- and microparticles exhibit several types of responses to external magnetic field which have been already employed in various areas of biosciences, biotechnology, medicine, environmental technology, etc. This short review shows selected important biotechnological applications of magnetic particles, and the biological processes leading to biogenic magnetic particles formation.
[1] Akgöl, S., Kaçar, Y., Denizli, A., & Arica, M. Y. (2001). Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres. Food Chemistry, 74, 281–288. DOI: 10.1016/S0308-8146(01)00150-9. http://dx.doi.org/10.1016/S0308-8146(01)00150-910.1016/S0308-8146(01)00150-9Suche in Google Scholar
[2] Antequera, Y. S., Mykhaylyk, O., Hammerschmid, E., & Plank, C. (2007). Magselectofection: Combined magnetic cell separation and magnetofection. Human Gene Therapy, 18, 1048–1048. DOI: 10.1089/hum.2007.1029. 10.1089/hum.2007.1029Suche in Google Scholar
[3] Arica, M. Y., Yavuz, H., Patir, S., & Denizli, A. (2000). Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor. Journal of Molecular Catalysis B: Enzymatic, 11, 127–138. DOI: 10.1016/S1381-1177(00)00223-X. http://dx.doi.org/10.1016/S1381-1177(00)00223-X10.1016/S1381-1177(00)00223-XSuche in Google Scholar
[4] Bahar, T., & Celebi, S. S. (1998). Characterization of glucoamylase immobilized on magnetic poly(styrene) particles. Enzyme and Microbial Technology, 23, 301–304. DOI: 10.1016/S0141-0229(98)00048-9. http://dx.doi.org/10.1016/S0141-0229(98)00048-910.1016/S0141-0229(98)00048-9Suche in Google Scholar
[5] Bazylinski, D. A., Frankel, R. B., & Konhauser, K. O. (2007). Modes of biomineralization of magnetite by microbes. Geomicrobiology Journal, 24, 465–475. DOI: 10.1080/01490450 701572259. Suche in Google Scholar
[6] Bazylinski, D. A., & Schübbe, S. (2007). Controlled biomineralization by and applications of magnetotactic bacteria. Advances in Applied Microbiology, 62, 21–62. DOI: 10.1016/S0065-2164(07)62002-4. http://dx.doi.org/10.1016/S0065-2164(07)62002-410.1016/S0065-2164(07)62002-4Suche in Google Scholar
[7] Berensmeier, S. (2006). Magnetic particles for the separation and purification of nucleic acids. Applied Microbiology and Biotechnology, 73, 495–504. DOI: 10.1007/s00253-006-0675-0. http://dx.doi.org/10.1007/s00253-006-0675-010.1007/s00253-006-0675-0Suche in Google Scholar
[8] Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., Sanyal, M., & Sastry, M. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2, 135–141. DOI: 10.1002/smll.200500180. http://dx.doi.org/10.1002/smll.20050018010.1002/smll.200500180Suche in Google Scholar
[9] Bilkova, Z., Slovakova, M., Lycka, A., Horak, D., Lenfeld, J., Turkova, J., & Churacek, J. (2002). Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. Journal of Chromatography B, 770, 25–34. DOI: 10.1016/S0378-4347(01)00439-X. http://dx.doi.org/10.1016/S0378-4347(01)00439-X10.1016/S0378-4347(01)00439-XSuche in Google Scholar
[10] Bruno, L. M., Coelho, J. S., Melo, E. H. M., & Lima, J. L. (2005). Characterization of Mucor miehei lipase immobilized on polysiloxane-polyvinyl alcohol magnetic particles. World Journal of Microbiology & Biotechnology, 21, 189–192. DOI: 10.1007/s11274-004-3321-y. http://dx.doi.org/10.1007/s11274-004-3321-y10.1007/s11274-004-3321-ySuche in Google Scholar
[11] Coleman, D. J., Chick, K. E., & Nye, K. J. (1995). An evaluation of immunomagnetic separation for the detection of salmonellas in raw chicken carcasses. Letters in Applied Microbiology, 21, 152–154. DOI: 10.1111/j.1472-765X.1995.tb01029.x. http://dx.doi.org/10.1111/j.1472-765X.1995.tb01029.x10.1111/j.1472-765X.1995.tb01029.xSuche in Google Scholar PubMed
[12] De Cuyper, M., De Meulenaer, B., Van der Meeren, P., & Vanderdeelen, J. (1995). Enzymatic activity of cytochrome c-oxidase inserted into magnetoliposomes differing in surface charge density. Biocatalysis and Biotransformation, 13, 77–87. DOI: 10.3109/10242429509015214. http://dx.doi.org/10.3109/1024242950901521410.3109/10242429509015214Suche in Google Scholar
[13] Demirel, D., Ozdural, A. R., & Mutlu, M. (2004). Performance of immobilized Pectinex Ultra SP-L on magnetic duolitepolystyrene composite particles — Part 1: A batch reactor study. Journal of Food Engineering, 64, 417–421. DOI: 10.1016/j.jfoodeng.2003.09.018. http://dx.doi.org/10.1016/j.jfoodeng.2003.09.01810.1016/j.jfoodeng.2003.09.018Suche in Google Scholar
[14] Duffy, G., Sheridan, J. J., Hofstra, H., McDowall, D. A., & Blair, I. S. (1997). A comparison of immunomagnetic and surface adhesion immunofluorescent techniques for the rapid detection of Listeria monocytogenes and Listeria innocua in meat. Letters in Applied Microbiology, 24, 445–450. DOI: 10.1046/j.1472-765X.1997.00139.x. http://dx.doi.org/10.1046/j.1472-765X.1997.00139.x10.1046/j.1472-765X.1997.00139.xSuche in Google Scholar
[15] Dunnill, P., & Lilly, M. D. (1974). Purification of enzymes using magnetic bio-affinity materials. Biotechnology and Bioengineering, 16, 987–990. DOI: 10.1002/bit.260160710. http://dx.doi.org/10.1002/bit.26016071010.1002/bit.260160710Suche in Google Scholar
[16] Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., Shafi, K. V. P. M., Ulman, A., Cowman, M., & Gross, R. A. (2003). Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. Journal of the American Chemical Society, 125, 1684–1685. DOI: 10.1021/ja021223n. http://dx.doi.org/10.1021/ja021223n10.1021/ja021223nSuche in Google Scholar
[17] Ennis, M. P., & Wisdom, G. B. (1991). A magnetizable solid phase for enzyme extraction. Applied Biochemistry and Biotechnology, 30, 155–164. DOI: 10.1007/BF02921683. http://dx.doi.org/10.1007/BF0292168310.1007/BF02921683Suche in Google Scholar
[18] Franzreb, M., Siemann-Herzberg, M., Hobley, T. J., & Thomas, O. R. T. (2006). Protein purification using magnetic adsorbent particles. Applied Microbiology and Biotechnology, 70, 505–516. DOI: 10.1007/s00253-006-0344-3. http://dx.doi.org/10.1007/s00253-006-0344-310.1007/s00253-006-0344-3Suche in Google Scholar
[19] Grant, I. R., Pope, C. M., O’Riordan, L. M., Ball, H. J., & Rowe, M. T. (2000). Improved detection of Mycobacterium avium subsp. paratuberculosis in milk by immunomagnetic PCR. Veterinary Microbiology, 77, 369–378. DOI: 10.1016/S0378-1135(00)00322-9. http://dx.doi.org/10.1016/S0378-1135(00)00322-910.1016/S0378-1135(00)00322-9Suche in Google Scholar
[20] Guo, Z., Bai, S., & Sun, Y. (2003). Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme and Microbial Technology, 32, 776–782. DOI: 10.1016/S0141-0229(03)00051-6. 10.1016/S0141-0229(03)00051-6Suche in Google Scholar
[21] Hendrix, P. G., Hoylaerts, M. F., Nouwen, E. J., Van de Voorde, A., & De Broe, M. E. (1992). Magnetic beads in suspension enable a rapid and sensitive immunodetection of human placental alkaline phosphatase. European Journal of Clinical Chemistry and Clinical Biochemistry, 30, 343–347. 10.1515/cclm.1992.30.6.343Suche in Google Scholar PubMed
[22] Hirschbein, B. L., & Whitesides, G. M. (1982). Affinity separation of enzymes from mixtures containing suspended solids: Comparisons of magnetic and nonmagnetic techniques. Applied Biochemistry and Biotechnology, 7, 157–176. DOI: 10.1007/BF02798294. http://dx.doi.org/10.1007/BF0279829410.1007/BF02798294Suche in Google Scholar
[23] Horak, D., Rittich, B., Safar, J., Spanova, A., Lenfeld, J., & Benes, M. J. (2001). Properties of RNase A immobilized on magnetic poly(2-hydroxyethyl methacrylate) microspheres. Biotechnology Progress, 17, 447–452. DOI: 10.1021/bp0100171. http://dx.doi.org/10.1021/bp010017110.1021/bp0100171Suche in Google Scholar
[24] Hubbuch, J. J., & Thomas, O. R. T. (2002). High-gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnology and Bioengineering, 79, 301–313. DOI: 10.1002/bit.10285. http://dx.doi.org/10.1002/bit.1028510.1002/bit.10285Suche in Google Scholar
[25] Chapman, P. A., & Cudjoe, K. S. (2001). Evaluation of Beadretriever™, an automated system for concentration of Escherichia coli O157 from enrichment cultures by immunomagnetic separation. Journal of Rapid Methods and Automation in Microbiology, 9, 203–214. DOI: 10.1111/j.1745-4581.2001.tb00243.x. http://dx.doi.org/10.1111/j.1745-4581.2001.tb00243.x10.1111/j.1745-4581.2001.tb00243.xSuche in Google Scholar
[26] Chapman, P. A., Ellin, M., & Ashton, R. (2001). A comparison of immunomagnetic separation and culture, RevealTM and VIP™ for the detection of E. coli O157 in enrichment cultures of naturally-contaminated raw beef, lamb and mixed meat products. Letters in Applied Microbiology, 32, 171–175. DOI: 10.1046/j.1472-765x.2001.00883.x. http://dx.doi.org/10.1046/j.1472-765x.2001.00883.x10.1046/j.1472-765x.2001.00883.xSuche in Google Scholar
[27] Inada, Y., Matsuswma, A., Kodera, Y., & Nishimura, H. (1990). Polyethylene glycol (PEG)-protein conjugates: Application to biomedical and biotechnological processes. Journal of Bioactive and Compatible Polymers, 5, 343–364. DOI: 10.1177/088391159000500309. http://dx.doi.org/10.1177/08839115900050030910.1177/088391159000500309Suche in Google Scholar
[28] Jang, K.-H., Song, K.-B., Park, B.-S., Kim, C. H., Chung, B. H., Choue, R. W., Lee, K. S., Lee, C., Chun, U.-H., & Rhee, S. K. (2001). Levan production by use of the recombinant levansucrase immobilized on titanium-activated magnetite. Process Biochemistry, 37, 339–343. DOI: 10.1016/S0032-9592(01)00215-1. http://dx.doi.org/10.1016/S0032-9592(01)00215-110.1016/S0032-9592(01)00215-1Suche in Google Scholar
[29] Karpíšková, R. & Holasová, M. (1999). The use of immunomagnetic separation in detection of Salmonella and Listeria from foodstuffs. Veterinární Medicína, 44, 225–228. (in Czech) Suche in Google Scholar
[30] Knight, K., Pimentel, M. D., de Morais, M. M. C., Ledingham, W. M., de Lima Filho, J. L., & Maia, M. D. (2000). Immobilization of lipase from Fusarium solani FS1. Brazilian Journal of Microbiology, 31, 220–222. DOI: 10.1590/S1517-83822000000300013. http://dx.doi.org/10.1590/S1517-8382200000030001310.1590/S1517-83822000000300013Suche in Google Scholar
[31] Lamoureux, M., MacKay, A., Messier, S., Fliss, I., Blais, B. W., Holley, R. A., & Simard, R. E. (1997). Detection of Campylobacter jejuni in food and poultry viscera using immunomagnetic separation and microtitre hybridization. Journal of Applied Microbiology, 83, 641–651. DOI: 10.1046/j.1365-2672.1997.00273.x. http://dx.doi.org/10.1046/j.1365-2672.1997.00273.x10.1046/j.1365-2672.1997.00273.xSuche in Google Scholar PubMed
[32] Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. V., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064–2110. DOI: 10.1021/cr068445e. http://dx.doi.org/10.1021/cr068445e10.1021/cr068445eSuche in Google Scholar PubMed
[33] Liao, M. H., & Chen, D. H. (2001). Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnology Letters, 23, 1723–1727. DOI: 10.1023/A:1012485221802. http://dx.doi.org/10.1023/A:101248522180210.1023/A:1012485221802Suche in Google Scholar
[34] Matsunaga, T., Okamura, Y., & Tanaka, T. (2004). Biotechnological application of nano-scale engineered bacterial magnetic particles. Journal of Materials Chemistry, 14, 2099–2105. DOI: 10.1039/b404844j. http://dx.doi.org/10.1039/b404844j10.1039/b404844jSuche in Google Scholar
[35] Megens, M., & Prins, M. (2005). Magnetic biochips: a new option for sensitive diagnostics. Journal of Magnetism and Magnetic Materials, 293, 702–708. DOI: 10.1016/j.jmmm.2005.02.046. http://dx.doi.org/10.1016/j.jmmm.2005.02.04610.1016/j.jmmm.2005.02.046Suche in Google Scholar
[36] Meyer, A., Hansen, D. B., Gomes, C. S. G., Hobley, T. J., Thomas, O. R. T., & Franzreb, M. (2005). Demonstration of a strategy for product purification by high-gradient magnetic fishing: Recovery of superoxide dismutase from unconditioned whey. Biotechnology Progress, 21, 244–254. DOI: 10.1021/bp049656c. http://dx.doi.org/10.1021/bp049656c10.1021/bp049656cSuche in Google Scholar
[37] Mosbach, K., & Andersson, L. (1977). Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature, 270, 259–261. DOI: 10.1038/270259a0. http://dx.doi.org/10.1038/270259a010.1038/270259a0Suche in Google Scholar
[38] Mosiniewicz-Szablewska, E., Safarikova, M., & Safarik, I. (2007). Magnetic studies of ferrofluid-modified spruce sawdust. Journal of Physics D: Applied Physics, 40, 6490–6496. DOI: 10.1088/0022-3727/40/21/003. http://dx.doi.org/10.1088/0022-3727/40/21/00310.1088/0022-3727/40/21/003Suche in Google Scholar
[39] Nishiya, Y., Hibi, T., & Oda, J. L. (2002). A purification method of the diagnostic enzyme Bacillus uricase using magnetic beads and non-specific protease. Protein Expression and Purification, 25, 426–429. DOI: 10.1016/S1046-5928(02)00022-0. http://dx.doi.org/10.1016/S1046-5928(02)00022-010.1016/S1046-5928(02)00022-0Suche in Google Scholar
[40] Odabasi, M., & Denizli, A. (2004). Cibacron blue F3GA incorporated magnetic poly(2-hydroxyethyl methacrylate) beads for lysozyme adsorption. Journal of Applied Polymer Science, 93, 719–725. DOI 10.1002/app.20485. http://dx.doi.org/10.1002/app.2048510.1002/app.20485Suche in Google Scholar
[41] Olsvik, O., Popovic, T., Skjerve, E., Cudjoe, K. S., Hornes, E., Ugelstad, J., & Uhlen, M. (1994). Magnetic separation techniques in diagnostic microbiology. Clinical Microbiology Reviews, 7, 43–54. 10.1128/CMR.7.1.43Suche in Google Scholar
[42] Radu, S., Ling, O.W., Rusul, G., Karim, M. I. A., & Nishibuchi, M. (2001). Detection of Escherichia coli O157: H7 by multiplex PCR and their characterization by plasmid profiling, antimicrobial resistance, RAPD and PFGE analyses. Journal of Microbiological Methods, 46, 131–139. DOI: 10.1016/S0167-7012(01)00269-X. http://dx.doi.org/10.1016/S0167-7012(01)00269-X10.1016/S0167-7012(01)00269-XSuche in Google Scholar
[43] Ripabelli, G., Sammarco, M. L., Ruberto, A., Iannitto, G., & Grasso, G. M. (1997). Immunomagnetic separation and conventional culture procedure for detection of naturally occurring Salmonella in raw pork sausages and chicken meat. Letters in Applied Microbiology, 24, 493–497. DOI: 10.1046/j.1472-765X.1997.00159.x. http://dx.doi.org/10.1046/j.1472-765X.1997.00159.x10.1046/j.1472-765X.1997.00159.xSuche in Google Scholar
[44] Safarik, I., Lunackova, P., Mosiniewicz-Szablewska, E., Weyda, F., & Safarikova, M. (2007a). Adsorption of water-soluble organic dyes on ferrofluid-modified sawdust. Holzforschung, 61, 247–253. DOI: 10.1515/HF.2007.060. http://dx.doi.org/10.1515/HF.2007.06010.1515/HF.2007.060Suche in Google Scholar
[45] Safarik, I., Rego, L. F. T., Borovska, M., Mosiniewicz-Szablewska, E., Weyda, F., & Safarikova, M. (2007b). New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme and Microbial Technology, 40, 1551–1556. DOI: 10.1016/j.enzmictec.2006.10.034. http://dx.doi.org/10.1016/j.enzmictec.2006.10.03410.1016/j.enzmictec.2006.10.034Suche in Google Scholar
[46] Safarik, I., Sabatkova, Z., Tokar, O., & Safarikova, M. (2007c). Magnetic cation exchange isolation of lysozyme from native hen egg white. Food Technology and Biotechnology, 45, 355–359. Suche in Google Scholar
[47] Safarik, I., & Safarikova, M. (1993). Batch isolation of hen egg white lysozyme with magnetic chitin. Journal of Biochemical and Biophysical Methods, 27, 327–330. DOI: 10.1016/0165-022X(93)90013-E. http://dx.doi.org/10.1016/0165-022X(93)90013-E10.1016/0165-022X(93)90013-ESuche in Google Scholar
[48] Safarik, I., & Safarikova, M. (1997). Overview of magnetic separations used in biochemical and biotechnological applications. In U. Hafeli, W. Schutt, J. Teller, & M. Zborowski (Eds.), Scientific and clinical applications of magnetic carriers (pp. 323–340). New York, London: Plenum Press. Suche in Google Scholar
[49] Safarik, I., & Safarikova, M. (1999). Use of magnetic techniques for the isolation of cells. Journal of Chromatography B, 722, 33–53. DOI: 10.1016/S0378-4347(98)00338-7. http://dx.doi.org/10.1016/S0378-4347(98)00338-710.1016/S0378-4347(98)00338-7Suche in Google Scholar
[50] Safarik, I., & Safarikova, M. (2002). Magnetic nanoparticles and biosciences. Monatshefte für Chemie, 133, 737–759. DOI: 10.1007/s007060200047. 10.1007/s007060200047Suche in Google Scholar
[51] Safarik, I., & Safarikova, M. (2004). Magnetic techniques for the isolation and purification of proteins and peptides. Bio-Magnetic Research and Technology, 2, 7. DOI: 10.1186/1477-044X-2-7. http://dx.doi.org/10.1186/1477-044X-2-710.1186/1477-044X-2-7Suche in Google Scholar
[52] Safarik, I., & Safarikova, M. (2007). Magnetically modified microbial cells: A new type of magnetic adsorbents. China Particuology, 5, 19–25. DOI: 10.1016/j.cpart.2006.12.003. http://dx.doi.org/10.1016/j.cpart.2006.12.00310.1016/j.cpart.2006.12.003Suche in Google Scholar
[53] Safarik, I., Safarikova, M., & Forsythe, S. J. (1995). The application of magnetic separations in applied microbiology. Journal of Applied Bacteriology, 78, 575–585. DOI: 10.1111/j.1365-2672.1995.tb03102.x. 10.1111/j.1365-2672.1995.tb03102.xSuche in Google Scholar
[54] Sakai, Y., Tamiya, Y., & Takahashi, F. (1994). Enhancement of ethanol formation by immobilized yeast containing iron powder or Ba-ferrite due to eddy current or hysteresis. Journal of Fermentation and Bioengineering, 77, 169–172. DOI: 10.1016/0922-338X(94)90318-2. http://dx.doi.org/10.1016/0922-338X(94)90318-210.1016/0922-338X(94)90318-2Suche in Google Scholar
[55] Schillinger, U., Brill, T., Rudolph, C., Huth, S., Gersting, S., Krotz, F., Hirschberger, J., Bergemann, C., & Plank, C. (2005). Advances in magnetofection — magnetically guided nucleic acid delivery. Journal of Magnetism and Magnetic Materials, 293, 501–508. DOI: 10.1016/j.jmmm.2005.01.032. http://dx.doi.org/10.1016/j.jmmm.2005.01.03210.1016/j.jmmm.2005.01.032Suche in Google Scholar
[56] Sinclair, B. (1998). To bead or not to bead: Applications of magnetic bead technology. Scientist, 12(13), 17–23. Suche in Google Scholar
[57] Takahashi, F., Sakai, Y., & Mizutani, Y. (1997). Immobilized enzyme reaction controlled by magnetic heating: γ-Fe2O3-loaded thermosensitive polymer gels consisting of N-isopropylacrylamide and acrylamide. Journal of Fermentation and Bioengineering, 83, 152–156. DOI: 10.1016/S0922-338X(97)83574-X. http://dx.doi.org/10.1016/S0922-338X(97)83574-X10.1016/S0922-338X(97)83574-XSuche in Google Scholar
[58] Tatsumi, K., Wada, S., & Ichikawa, H. (1996). Removal of chlorophenols from wastewater by immobilized horseradish peroxidase. Biotechnology and Bioengineering, 51, 126–130. DOI: 10.1002/(SICI)1097-0290(19960705)51:1〈126::AIDBIT15〉 3.0.CO;2-O. http://dx.doi.org/10.1002/(SICI)1097-0290(19960705)51:1<126::AID-BIT15>3.0.CO;2-O10.1002/(SICI)1097-0290(19960705)51:1<126::AID-BIT15>3.0.CO;2-OSuche in Google Scholar
[59] Tong, X. D., Xue, B., & Sun, Y. (2001). A novel magnetic affinity support for protein adsorption and purification. Biotechnology Progress, 17, 134–139. DOI: 10.1021/bp000134g. http://dx.doi.org/10.1021/bp000134g10.1021/bp000134gSuche in Google Scholar
[60] Wang, S. X., Bae, S. Y., Li, G. X., Sun, S. H., White, R. L., Kemp, J. T., & Webb, C. D. (2005). Towards a magnetic microarray for sensitive diagnostics. Journal of Magnetism and Magnetic Materials, 293, 731–736. DOI: 10.1016/j.jmmm.2005.02.054. http://dx.doi.org/10.1016/j.jmmm.2005.02.05410.1016/j.jmmm.2005.02.054Suche in Google Scholar
[61] Wang, S. X., & Li, G. (2008). Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. IEEE Transactions on Magnetics, 44, 1687–1702. DOI: 10.1109/TMAG.2008.920962. http://dx.doi.org/10.1109/TMAG.2008.92096210.1109/TMAG.2008.920962Suche in Google Scholar
[62] Yang, C. L., Guan, Y. P., Xing, J. M., & Liu, H. Z. (2006). Development of superparamagnetic functional carriers and application for affinity separation of subtilisin Carlsberg. Polymer, 47, 2299–2304. DOI: 10.1016/j.polymer.2006.02.013. http://dx.doi.org/10.1016/j.polymer.2006.02.01310.1016/j.polymer.2006.02.013Suche in Google Scholar
[63] Yang, C. L., Xing, J. M., Guan, Y. P., & Liu, H. Z. (2006). Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth. Applied Microbiology and Biotechnology, 72, 616–622. DOI: 10.1007/s00253-006-0484-5. http://dx.doi.org/10.1007/s00253-006-0484-510.1007/s00253-006-0484-5Suche in Google Scholar
[64] Yavuz, H., Denizli, A., Gungunes, H., Safarikova, M., & Safarik, I. (2006). Biosorption of mercury on magnetically modified yeast cells. Separation and Purification Technology, 52, 253–260. DOI: 10.1016/j.seppur.2006.05.001. http://dx.doi.org/10.1016/j.seppur.2006.05.00110.1016/j.seppur.2006.05.001Suche in Google Scholar
[65] Yu, L. S. L., Uknalis, J., & Tu, S. I. (2001). Immunomagnetic separation methods for the isolation of Campylobacter jejuni from ground poultry meats. Journal of Immunological Methods, 256, 11–18. DOI: 10.1016/S0022-1759(01)00372-6. http://dx.doi.org/10.1016/S0022-1759(01)00372-610.1016/S0022-1759(01)00372-6Suche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether