Home Gas chromatography with surface ionization detection of nitro pesticides
Article
Licensed
Unlicensed Requires Authentication

Gas chromatography with surface ionization detection of nitro pesticides

  • Seiji Takahashi EMAIL logo , Futoshi Nagamura , Miki Sasaki and Toshihiro Fujii
Published/Copyright: August 25, 2009
Become an author with De Gruyter Brill

Abstract

A surface ionization gas chromatographic detector, based upon positive surface ionization, was used in capillary gas chromatography to sensitively and selectively detect nitro pesticides: pendimethalin, trifluralin, flumetralin. Higher sensitivity (better detection limit), substance specificity, and advantageous applicability are reported. Sensitivity to pendimethalin, trifluralin, and flumetralin was 1.4 C g−1, 1.1 C g−1, and 1.0 C g−1, respectively, with the linear range of operation greater than 1 × 105 for these compounds. The minimum detectable level was in the range of 10−13 g s−1. Compared with an atomic emission detector, SID provided a 110 times better detection limit for trifluralin.

[1] Dane, A. J., Havey, C. D., & Voorhees, K. J. (2006). The detection of nitro pesticides in mainstream and sidestream cigarette smoke using electron monochromator-mass spectrometry. Analytical Chemistry, 78, 3227–3233. DOI: 10.1021/ac060328w. http://dx.doi.org/10.1021/ac060328w10.1021/ac060328wSearch in Google Scholar

[2] Eisert, R., & Levsen, K. (1995). Determination of organophosphorus, triazine and 2,6-dinitroaniline pesticides in aqueous samples via solid-phase microextraction (SPME) and gas chromatography with nitrogen-phosphorus detection. Fresenius’ Journal of Analytical Chemistry, 351, 555–562. DOI: 10.1007/BF00322732. http://dx.doi.org/10.1007/BF0032273210.1007/BF00322732Search in Google Scholar

[3] Fujii, T. (1996a). Account: Surface ionization organic mass spectrometry: applications in gas chromatography. European Journal of Mass Spectrometry, 2, 263–271. DOI: 10.1255/ejms.58. http://dx.doi.org/10.1255/ejms.5810.1255/ejms.58Search in Google Scholar

[4] Fujii, T. (1996b). Account: Surface ionization organic mass spectrometry: mechanism. European Journal of Mass Spectrometry, 2, 91–114. DOI: 10.1255/ejms.73. http://dx.doi.org/10.1255/ejms.7310.1255/ejms.73Search in Google Scholar

[5] Fujii, T., & Arimoto, H. (1985). Thermionic ionization detector with lanthanum hexaboride/silicon dioxide thermionic emitter material for gas chromatography. Analytical Chemistry, 57, 490–493. DOI: 10.1021/ac50001a039. http://dx.doi.org/10.1021/ac50001a03910.1021/ac50001a039Search in Google Scholar

[6] Fujii, T., Jimba, H., & Arimoto, H. (1990). Mass spectrometric studies on the response mechanism of surface ionization detectors for gas chromatography. Analytical Chemistry, 62, l07–111. DOI: 10.1021/ac00201a004. 10.1021/ac00201a004Search in Google Scholar

[7] Haib, J., Hofer, I., & Renaud, J.-M. (2003). Analysis of multiple pesticide residues in tobacco using pressurized liquid extraction, automated solid-phase extraction clean-up and gas chromatography-tandem mass spectrometry. Journal of Chromatography A, 1020, 173–187. DOI: 10.1016/j.chroma.2003.08.049. http://dx.doi.org/10.1016/j.chroma.2003.08.04910.1016/j.chroma.2003.08.049Search in Google Scholar

[8] Halfon, E., Galassi, S., Brüggemann, R., & Provini, A. (1996). Selection of priority properties to assess environmental hazard of pesticides. Chemosphere, 33, 1543–1562. DOI: 10.1016/0045-6535(96)00274-3. http://dx.doi.org/10.1016/0045-6535(96)00274-310.1016/0045-6535(96)00274-3Search in Google Scholar

[9] Kissinger, P. T., Bratin, K., King, W. P., & Rice, J. R. (1981). Amperometric determination of oxidizable and reducible residues following their separation by liquid chromatography. Swiss Chem, 3(9), 77–88. Search in Google Scholar

[10] Maund, S., Barber, I., Dulka, J., Gonzalez-Valero, J., Hamer, M., Heimbach, F., Marshall, M., McCahon, P., Staudenmaier, H., & Wustner, D. (1997). Development and evaluation of triggers for sediment toxicity testing of pesticides with benthic macroinvertebrates. Environmental Toxicology and Chemistry, 16, 2590–2596. DOI: 10.1897/1551-5028(1997)016〈2590:DAEOTF〉2.3.CO;2. http://dx.doi.org/10.1897/1551-5028(1997)016<2590:DAEOTF>2.3.CO;210.1897/1551-5028(1997)016<2590:DAEOTF>2.3.CO;2Search in Google Scholar

[11] Mezcua, M., Agüera, A., Lliberia, J. L., Cortés, M. A., Bagó, B., & Fernández-Alba, A. R. (2006). Application of ultra performance liquid chromatography-tandem mass spectrometry to the analysis of priority pesticides in groundwater. Journal of Chromatography A, 1190, 222–227. DOI: 10.1016/j.chroma.2006.01.024. http://dx.doi.org/10.1016/j.chroma.2006.01.02410.1016/j.chroma.2006.01.024Search in Google Scholar

Published Online: 2009-8-25
Published in Print: 2009-10-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Magnetic nano- and microparticles in biotechnology
  2. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
  3. Copper determination using ICP-MS with hexapole collision cell
  4. Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
  5. Robust stabilization of a chemical reactor
  6. Influence of production progress on the heavy metal content in flax fibers
  7. In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
  8. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
  9. Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
  10. Characterization of mechanochemically synthesized lead selenide
  11. Hydroxyapatite modified with silica used for sorption of copper(II)
  12. Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
  13. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
  14. Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
  15. Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
  16. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
  17. Gas chromatographic retention times prediction for components of petroleum condensate fraction
  18. Gas chromatography with surface ionization detection of nitro pesticides
  19. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
  20. Aqueous foam stabilized by polyoxyethylene dodecyl ether
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0062-2/html
Scroll to top button