Abstract
In this study, new benzoylthiourea derivatives, (E)-N-[(2-benzamidomethyleneamino)ethylcarbamothioyl]benzamide H3L′, N-(1-(3-benzoylthioureido)propan-2-ylcarbamothioyl)-benzamide H4L″, (E)-N-[4-(benzamidomethyleneamino)phenylcarbamothioyl]benzamide H3L‴, were synthesized. Structures of the compounds were identified by spectroscopic techniques. In addition, all synthesized compounds were evaluated for in vitro antibacterial and antifungal activity. Compound H3L‴ exhibited antibacterial activity.
[1] Antochshuk, V., Olkhovyk, O., & Jaroniec, M. (2003). Benzoylthiourea-modified mesoporous silica for mercury(II) removal. Langmuir, 19, 3031–3034. DOI: 10.1021/la026739z. http://dx.doi.org/10.1021/la026739z10.1021/la026739zSearch in Google Scholar
[2] Arslan, H., Kulcu, N., & Florke, U. (2006). Normal coordinate analysis and crystal structure of N,N-dimethyl-N 1-(2-chlorobenzoyl) thiourea. Spectrochimica Acta Part A, 64, 1065–1071. DOI: 10.1016/j.colsurfa.2003.12.032. http://dx.doi.org/10.1016/j.saa.2005.09.01610.1016/j.colsurfa.2003.12.032Search in Google Scholar
[3] Avşar, G., Arslan, H., Haupt, H. J., & Külcü, N. (2003). Crystal structure of cis-bis(N,N-dimethyl-N-benzoyl thioureato) palladium(II). Turkish Journal of Chemistry, 27, 281–285. Search in Google Scholar
[4] Avşar, G., Külcü, N., & Arslan, H. (2002). Thermal behaviour of copper(II), nickel (II), cobalt(II) and palladium(II) complexes of N,N-dimethyl-N′-benzoyl thiourea. Turkish Journal of Chemistry, 26, 607–615. Search in Google Scholar
[5] Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496. 10.1093/ajcp/45.4_ts.493Search in Google Scholar
[6] Bınzet, G., Arslan, H., Flörke, U., Külcü, N., & Duran, N. (2006). Synthesis, characterization and antimicrobial activities of transition metal complexes of N,N-dialkyl-N-(2-chlorobenzo yl)thiourea derivatives. Journal of Coordination Chemistry, 59, 1395–1406. DOI: 10.1080/00958970500512633. http://dx.doi.org/10.1080/0095897050051263310.1080/00958970500512633Search in Google Scholar
[7] Che, D. J., Li, G., Yu, Z., Zou, D. P., & Du, C. X. (2000). Oxidative cyclization and coordinate polymerization of N-benzoyl-N′-(2-pyridyl)thiourea with copper(II) chloride. Inorganic Chemistry Communications, 3, 537–540. DOI: 10.1016/S1387-7003(00)00115-5. http://dx.doi.org/10.1016/S1387-7003(00)00115-510.1016/S1387-7003(00)00115-5Search in Google Scholar
[8] del Campo, R., Criado, J. J., Gheorghe, R., González, F. J., Hermosa, M. R., Sanz, F., Manzano, J. L., Monte, E., & Rodríguez-Fernández, E. (2004). N-benzoyl-N I-alkylthioureas and their complexes with Ni(II), Co(III) and Pt(II) crystal structure of 3-benzoyl-1-butyl-1-methyl-thiourea: activity against fungi and yeast. Journal of Inorganic Biochemistry, 98, 1307–1314. DOI: 10.1016/j.jinorgbio.2004.03.019. http://dx.doi.org/10.1016/j.jinorgbio.2004.03.01910.1016/j.jinorgbio.2004.03.019Search in Google Scholar
[9] Domínguez, M., Anticó, E., Beyer, L., Aguirre, A. García-Granda, S., & Salvadó, V. (2002). Liquid-liquid extraction of palladium(II) and gold(III) with N I-benzoyl-N I, N I-diethylthiourea and the synthesis of a palladium benzoylthiourea complex. Polyhedron, 21, 1429–1437. DOI: 10.1016/S0277-5387(02)00948-8. http://dx.doi.org/10.1016/S0277-5387(02)00948-810.1016/S0277-5387(02)00948-8Search in Google Scholar
[10] Fontàs, C., Hidalgo, M., Salvadó, V., & Anticó, E. (2005). Selective recovery and precon centration of mercury with benzoylthiourea-solid supported liquid membrane system. Analytica Chimica Acta, 547, 255–261. DOI: 10.1016/j.aca.2005.05.044. http://dx.doi.org/10.1016/j.aca.2005.05.04410.1016/j.aca.2005.05.044Search in Google Scholar
[11] Marquez, H., Loupy, A., Calderon, O., & Pérez, R. E. (2006). An eco-friendly protocol for synthesis of thiourea derivatives: 1-benzoyl-3-benzylguanidine and 1-benzoyl-3-benzyl-O-ethylisourea. A possible non-purely thermal microwave assisted reaction. Tetrahedron, 62, 2616–2621. DOI: 10.1016/j.tet.2005.12.037. http://dx.doi.org/10.1016/j.tet.2005.12.03710.1016/j.tet.2005.12.037Search in Google Scholar
[12] Ozpozan, N., Ozpozan, T., Arslan, H., Karipcin, F., & Külcü, N. (1999). Thermal behaviours of Co(II), Ni(II), Cu(II), and Pb(II) complexes of N,N-dipropyl-N-benzoylthiourea. Thermochimica Acta, 336, 97–103. DOI: 10.1016/S0040-6031(99)00208-7. http://dx.doi.org/10.1016/S0040-6031(99)00208-710.1016/S0040-6031(99)00208-7Search in Google Scholar
[13] Rether, A., & Schuster, M. (2003). Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. Reactive and Functional Polymers, 57, 13–21. DOI: 10.1016/j.reactfunctpolym.2003.06.002. http://dx.doi.org/10.1016/j.reactfunctpolym.2003.06.00210.1016/j.reactfunctpolym.2003.06.002Search in Google Scholar
[14] Uğur, D., Arslan, H., & Külcü, N. (2006). Synthesis, characterization and thermal behavior of 1,1-dialkyl-3-(4-(3,3-dialkylthioureidocarbonyl)benzoyl)thiourea and its Cu(II), Ni(II), and Co(II) complexes. Russian Journal of Coordination Chemistry, 32, 669–675. DOI: 10.1134/S1070328406090089. http://dx.doi.org/10.1134/S107032840609008910.1134/S1070328406090089Search in Google Scholar
[15] Xu, X., Qian, X., Li, Z., Huang, Q., & Chen, G. (2003). Synthesis and insecticidal activity of new substituted N-aryl-N 1-benzoyl thiourea compounds. Journal of Fluorine Chemistry, 121, 51–54. DOI: 10.1016/S0022-1139(02)00330-5 http://dx.doi.org/10.1016/S0022-1139(02)00330-510.1016/S0022-1139(02)00330-5Search in Google Scholar
[16] Zhou, W. Q., Li, B. L., Cao, Y., Zhang, Y., Lu, L. D., & Yang, X. J. (2005a). The structure and conformation analysis of N-2-fluorobenzoyl-N I-2-methoxy phenyl thiourea. Journal of Molecular Structure: Theochem, 715, 117–124. DOI: 10.1016/j.theochem.2004.09.058. http://dx.doi.org/10.1016/j.theochem.2004.09.05810.1016/j.theochem.2004.09.058Search in Google Scholar
[17] Zhou, W. Q., Yang, W., & Qiu, L. (2005b). Structure and stability of thiourea with water, DFT and MP2 calculations. Journal of Molecular Structure: Theochem, 730, 131–139. DOI: 10.1016/j.theochem.2005.06.012 10.1016/j.theochem.2005.06.012Search in Google Scholar
[18] Zhou, W. Q., Yang, W., Qiu, L., Zhang, Y., & Yu, Z. F. J. (2005c). Structures and vibrational spectra of the N-benzoyl-N′-dialkylthiourea derivative and their complexes with Hg(II). Journal of Molecular Structure: Theochem, 749, 89–95. DOI: 10.1016/j.molstruc.2005.03.046. 10.1016/j.molstruc.2005.03.046Search in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether
Articles in the same Issue
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether