Abstract
2-[3-(Trifluoromethyl)phenyl]-4,5-dihydrofuro[3,2-c]pyridin-4-one (I) was prepared by a three-step synthesis. Its reaction with phosphorus sulfide rendered thione II which was methylated to 2-[3-(Trifluoromethyl)phenyl]-4-methylsulfanylfuro[3,2-c]pyridine (III). 5-Methyl-2-[3-(trifluoromethyl)phenyl]-4,5-dihydrofuro[3,2-c]pyridin-4-one (IV) was obtained by the reaction of I with methyl iodide in PTC conditions. The chlorine atom in derivate V was replaced with heterocyclic secondary amines via nucleophilic substitution and 4-substituted furopyridines VIa and VIb were thus prepared. 2-[3-(Trifluoromethyl)phenyl]furo[3,2-c]pyridine-4-carboxylic acid (VII) was obtained by hydrolysis of the corresponding carbonitrile Va.
[1] Abramovitch, R. A., Deeb, A., Kishore, D., Mpango, G. B. W., & Shinkai, I. (1988). The reaction of 4-chloropyridine 1-oxide with activated acetylenes. A convenient one-step synthesis of furo[3,2-c]pyridines. Gazzetta Chimica Italiana, 118, 167–171. 10.1002/chin.198830212Suche in Google Scholar
[2] Andrzejewska, M., Yépez-Mulia, L., Cedillo-Rivera, R., Tapia, A., Vilpo, L., Vilpo, J., & Kazimierczuk, Z. (2002). Synthesis, antiprotozoal and anticancer activity of substituted 2-trifluoromethyl- and 2-pentafluoroethylbenzimidazoles. European Journal of Medicinal Chemistry, 37, 973–978. DOI: 10.1016/S0223-5234(02)01421-6. http://dx.doi.org/10.1016/S0223-5234(02)01421-610.1016/S0223-5234(02)01421-6Suche in Google Scholar
[3] Baran, P., Boča, M., Boča, R., Krutošíková, A., Miklovič, J., Pelikán, J., & Titiš, J. (2005). Structural characterization, spectral and magnetic properties of isothiocyanate nickel(II) complexes with furopyridine derivatives. Polyhedron, 24, 1510–1516. DOI: 10.1016/j.poly.2005.03.103. http://dx.doi.org/10.1016/j.poly.2005.03.10310.1016/j.poly.2005.03.103Suche in Google Scholar
[4] Bencková, M., & Krutošíková A. (1999). 5-Aminofuro[3,2-c]pyridinium tosylates and substituted furo[3,2-c]pyridine N-oxides: Synthesis and reactions. Collection of Czechoslovak Chemical Communications, 64, 539–547. DOI: 10.1135/cccc19990539. http://dx.doi.org/10.1135/cccc1999053910.1135/cccc19990539Suche in Google Scholar
[5] Bobošík, V., Krutošíková, A., & Jordis, U. (1995). Synthesis and reactions of 2,3-dimethylfuro[3,2-c]pyridines. Monatshefte für Chemie, 126, 747–752. DOI: 10.1007/BF00807165. http://dx.doi.org/10.1007/BF0080716510.1007/BF00807165Suche in Google Scholar
[6] Boča, R., & Titiš, J. (2008). Magnetostructural D-correlation for zero-field in nickel(II) complexes. In T. W. Cartere, & K. S. Verley (Eds.), Coordination chemistry research progress (Chapter 9, pp. 247–304). New York: Nova Sciences Publishers, Inc. Suche in Google Scholar
[7] Bradiaková, I., Prónayová, N., Gatial, A., & Krutošíková, A. (2008). Synthesis and reactions of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine. Chemical Papers, 62, 428–434. DOI: 10.2478/s11696-008-0039-6. http://dx.doi.org/10.2478/s11696-008-0039-610.2478/s11696-008-0039-6Suche in Google Scholar
[8] Búdová, M., Fojtíková, K., Miklovič, J., Mrázová, V., Horváth, B., & Krutošíková, A. (2006). Synthesis and reactions of 2- and 4-substituted furo[3,2-c]pyridines. Chemical Papers, 60, 231–236. DOI: 10.2478/s11696-006-0041-9. http://dx.doi.org/10.2478/s11696-006-0041-910.2478/s11696-006-0041-9Suche in Google Scholar
[9] Friedrichsen, W. (1984). Furans, thiophenes and selenophenes with fused six-membered heterocyclic rings. In A. R. Katritzky, & C. W. Rees (Eds.), Comprehensive heterocyclic chemistry, Vol. 4, Part 3: Five-membered rings with one oxygen, sulfur or nitrogen atom (Chapter 3.17, pp. 973–1036). Oxford: Pergamon Press Inc. Suche in Google Scholar
[10] Gajdoš, P., Miklovič, J., & Krutošíková, A. (2006). Reactions of 5-[3-(trifuoromethyl)phenyl]furan-2-carbaldehyde. Chemistry of Heterocyclic Compounds, 42, 719–725. DOI: 10.1007/s10593-006-0151-x. http://dx.doi.org/10.1007/s10593-006-0151-x10.1007/s10593-006-0151-xSuche in Google Scholar
[11] Gašparováth, R., Moncman, M., & Horváth, B. (2008). Microwave assisted reactions of 2-[3-(trifluoromethyl)phenyl]-4-R1-furo[3,2-b]pyrrole-5-carboxhydrazides. Central European Journal of Chemistry, 6, 180–187. DOI: 10.2478/s11532-008-0009-4. http://dx.doi.org/10.2478/s11532-008-0009-410.2478/s11532-008-0009-4Suche in Google Scholar
[12] Hörlein, G., Kübel, B., Studeneer, A., & Salbeck, G. (1979). Heterocyclen durch Anellierung an 4-Pyridinole, I. Furo[3,3,2-c]pyridin-3-ole und Furo[3,2-c]pyridin-3(2H)-one. Liebigs Annalen der Chemie, 1979, 371–386 DOI: 10.1002/jlac.197919-790309. http://dx.doi.org/10.1002/jlac.197919790309Suche in Google Scholar
[13] Krutošíková, A. (1995). Synthesis of substituted and fused furo [3,2-c]pyridines. Chemistry of Heterocyclic Compounds, 31, 1219–1221. DOI: 10.1007/BF01185596. http://dx.doi.org/10.1007/BF0118559610.1007/BF01185596Suche in Google Scholar
[14] Krutošíková, A., Dandárová, M., & Alföldi, J. (1994). Substituted vinyl azides in the synthesis of condensed nitrogen heterocycles. Chemical Papers, 48, 268–273. Suche in Google Scholar
[15] Krutošíková, A., Dandárová, M., Chylová, J., & Végh, D. (1992). Condensed O-, N-heterocycles by the transformation of azidoacrylates. Monatshefte für Chemie, 123, 807–815 DOI: 10.1007/BF00812330. http://dx.doi.org/10.1007/BF0081233010.1007/BF00812330Suche in Google Scholar
[16] Krutošíková, B., Mitasová, B., Jóna, E., & Bobošíková, M. (2001). Synthesis, thermal and spectral properties of Cu(II) and Ni(II) complexes with furopyridines or quinoline. Chemical Papers, 55, 290–293 Suche in Google Scholar
[17] Krutošíková, A., & Sleziak, R. (1996). Synthesis of 2-arylfuro [3,2-c]pyridines and their derivatives. Collection of Czechoslovak Chemical Communications, 61, 1627–1636. DOI: 10.1135/cccc19961627. http://dx.doi.org/10.1135/cccc1996162710.1135/cccc19961627Suche in Google Scholar
[18] Miklovič, J., Krutošíková, A., & Baran, P. (2004). Two furopyridine complexes of nickel(II) isothiocyanate. Acta Crystallographica Section C, 60, m227–m230. DOI: 10.1107/S0108270 104007796. http://dx.doi.org/10.1107/S010827010400779610.1107/S0108270104007796Suche in Google Scholar
[19] Mojumdar, S. C., Miklovič, J., Krutošíková, A., Valigura, D., & Stewart, J. M. (2005). Furopyridines and furopyridine-Ni(II) complexes-synthesis, thermal and spectral characterization. Journal of Thermal Analysis and Calorimetry, 81, 211–215. DOI: 10.1007/s10973-005-0769-4. http://dx.doi.org/10.1007/s10973-005-0769-410.1007/s10973-005-0769-4Suche in Google Scholar
[20] Molina, P., Fresneda, P. M., & Hurtado, F. (1987). An efficient iminophosphorane-mediated synthesis of thieno[3,2-c]pyridine, thieno[2,3-c]pyridine and furo[3,2-c]pyridine derivatives. Synthesis, 1987, 45–48. DOI: 10.1055/s-1987-27837. http://dx.doi.org/10.1055/s-1987-2783710.1055/s-1987-27837Suche in Google Scholar
[21] Navarrete-Vázquez, G., Yépez, L., Hernández-Campos, A., Tapia, A., Hernández-Luis, F., Cedillo, R., González, J., Martínez-Fernández, A., Martínez-Grueiro, M., & Castillo, R. (2003). Synthesis and antiparasitic activity of Albendazole and Mebendazole analogues. Bioorganic & Medicinal Chemistry, 11, 4615–4622. DOI: 10.1016/S0968-0896(03)00497-8. http://dx.doi.org/10.1016/S0968-0896(03)00497-810.1016/S0968-0896(03)00497-8Suche in Google Scholar
[22] Navarrete-Vázquez, G., de Monserrat Rojano-Vilchis, M., Yépez-Mulia, L., Meléndez, V., Gerena, L., Hernández-Campos, A., Castillo, R., & Hernández-Luis, F. (2006). Synthesis and antiprotozoal activity of some 2-(trifluoromethyl)-1H-benzimidazole bioisosteres. European Journal of Medicinal Chemistry, 41, 135–141. DOI: 10.1016/j.ejmech.2005.09.001. http://dx.doi.org/10.1016/j.ejmech.2005.09.00110.1016/j.ejmech.2005.09.001Suche in Google Scholar PubMed
[23] New, J. S., Christopher, W. L., Yevich, J. P., Butler, R., Schlemmer, R. F., Van der Maelen, C. P., & Cipollina, J. A. (1989). The thieno[3,2-c]pyridine and furo[3,2-c]pyridine rings: new pharmacophores with potential antipsychotic activity. Journal of Medical Chemistry, 32, 1147–1156. DOI: 10.1021/jm00126a002. http://dx.doi.org/10.1021/jm00126a00210.1021/jm00126a002Suche in Google Scholar PubMed
[24] Sherman, A. R. (1996). Bicyclic 5-6 systems: two heteroatoms 1:1. In A. R. Katritzky, C.W. Rees, & E. F. V. Scriven (Eds.), Comprehensive heterocyclic chemistry II, Vol. 7: Fused five- and six-membered rings without ring junction heteroatoms (Chapter 7.06, pp. 167–227). Oxford: Pergamon Press Inc. Suche in Google Scholar
[25] Sherman, A. R. (2008). Bicyclic 5–6 systems: two heteroatoms 1:1. In A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, & R. J. K. Taylor (Eds.), Comprehensive heterocyclic chemistry III, Vol. 10: Ring systems with at least two fused heterocyclic five- or six-membered rings with no bridgehead (ring junction) heteroatom (Chapter 10.06, pp. 263–338). Oxford: Elsevier. http://dx.doi.org/10.1016/B978-008044992-0.00906-810.1016/B978-008044992-0.00906-8Suche in Google Scholar
[26] Titiš, J., Boča, R., Dlháň, L., Ďurčeková, T., Fuess, H., Ivaniková, R., Mrázová, V., Papánková, B., & Svoboda, I. (2007). Magnetostructural correlations in heteroleptic nickel(II) complexes. Polyhedron, 26, 1523–1530. DOI: 10. 1016/j.poly.2006.11.054. http://dx.doi.org/10.1016/j.poly.2006.11.05410.1016/j.poly.2006.11.054Suche in Google Scholar
[27] Vrábel, V., Švorc, Ľ., Bradiaková, I., Kožíšek, J., & Krutošíková A. (2007a). 2-[3-(Trifluoromethyl)phenyl]furo[3,2-c]pyridine. Acta Crystallographica Section E, 63, o4516 DOI: 10.1107/S1600536807054062. http://dx.doi.org/10.1107/S160053680705406210.1107/S1600536807054062Suche in Google Scholar
[28] Vrábel, V., Švorc, Ľ., Juristová, N., Miklovič, J., & Kožíšek, J. (2007b). Tetra-μ-acetato-bis[(benzofuro[3,2-c]pyridine) copper(II)]. Acta Crystallographica Section E, 63, m2112–m2113. DOI: 10.1107/S1600536807032242. http://dx.doi.org/10.1107/S160053680703224210.1107/S1600536807032242Suche in Google Scholar
[29] Vrábel, V., Švorc, Ľ, Juristová, N., Miklovič, J., & Kožíšek, J. (2007c). Bis(1-benzofuro[3,2-c]pyridine-κN)dichloridocobalt (II). Acta Crystallographica Section E, 63, m2427–m2428 DOI: 10.1107/S160053680704161X. http://dx.doi.org/10.1107/S160053680704161X10.1107/S160053680704161XSuche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether
Artikel in diesem Heft
- Magnetic nano- and microparticles in biotechnology
- Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
- Copper determination using ICP-MS with hexapole collision cell
- Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
- Robust stabilization of a chemical reactor
- Influence of production progress on the heavy metal content in flax fibers
- In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
- Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
- Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
- Characterization of mechanochemically synthesized lead selenide
- Hydroxyapatite modified with silica used for sorption of copper(II)
- Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
- Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
- Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
- Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
- Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
- Gas chromatographic retention times prediction for components of petroleum condensate fraction
- Gas chromatography with surface ionization detection of nitro pesticides
- Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
- Aqueous foam stabilized by polyoxyethylene dodecyl ether