Startseite Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group

  • Mijoon Lee EMAIL logo , Dusan Hesek , Bruce Noll und Shahriar Mobashery
Veröffentlicht/Copyright: 25. August 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Dimethylmaleoyl (DMM) moiety has become an important amine protective group in sugar chemistry. We disclose herein that DMM-containing D-glucosamine analogues, because of their electrophilic nature, are prone to reactions with strong nucleophiles, such as hydrazine, resulting in a set of undesired side products that are difficult to detect, yet proved to be problematic for organic synthesis.

[1] Aly, M. R. E., Castro-Palomino, J. C., Ibrahim, E. S. I., El-Ashry, E. S. H., & Schmidt, R. R. (1998). The dimethylmaleoyl group as amino protective group — application to the synthesis of glucosamine-containing oligosaccharides. European Journal of Organic Chemistry, 2305–2316. DOI: 10.1002/(SICI)1099-0690(199811)1998:11〈2305:AID-EJOC2305〉3.0.CO;2-W. Suche in Google Scholar

[2] Aly, M. R. E., Ibrahim, E. S. I., El Ashry, E. S. H., & Schmidt, R. R. (2001). Synthesis of chitotetraose and chitohexaose based on dimethylmaleoyl protection. Carbohydrate Research, 331, 129–142. DOI: 10.1016/S0008-6215(01)00024-6. http://dx.doi.org/10.1016/S0008-6215(01)00024-610.1016/S0008-6215(01)00024-6Suche in Google Scholar

[3] Bruker. (2008). Apex2 [computer software]. Madison, WI: Bruker AXS Inc. Suche in Google Scholar

[4] Cho, S., Wang, Q., Swaminathan, C. P., Hesek, D., Lee, M., Boons, G. J., Mobashery, S., & Mariuzza, R. A. (2007). Structural insights into the bactericidal mechanism of human peptidoglycan recognition proteins. Proceedings of the National Academy of Sciences of the United States of America, 104,8761–8766. DOI: 10.1073/pnas.0701453104. http://dx.doi.org/10.1073/pnas.070145310410.1073/pnas.0701453104Suche in Google Scholar PubMed PubMed Central

[5] El Ashry, E. S. H., & Aly, M. R. E. (2007). Synthesis and biological relevance of N-acetylglucosamine-containing oligosaccharides. Pure and Applied Chemistry, 79, 2229–2242. DOI: 10.1351/pac200779122229. http://dx.doi.org/10.1351/pac20077912222910.1351/pac200779122229Suche in Google Scholar

[6] Fuda, C., Hesek, D., Lee, M., Morio, K.-I., Nowak, T., & Mobashery, S. (2005). Activation for catalysis of penicillinbinding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall. Journal of the American Chemical Society, 127, 2056–2057. DOI: 10.1021/ja0434376. http://dx.doi.org/10.1021/ja043437610.1021/ja0434376Suche in Google Scholar PubMed

[7] Hedaya, E., Hinman, R. L., & Theodoropulos, S. (1966). Preparation and properties of some new N,N′-biisoimides and their cyclic isomers. Reaction of N,N′-biisomaleimide with dienes. Journal of Organic Chemistry, 31, 1317–1326. DOI: 10.1021/jo01343a002. http://dx.doi.org/10.1021/jo01343a00210.1021/jo01343a002Suche in Google Scholar

[8] Hesek, D., Lee, M., Morio, K.-I., & Mobashery, S. (2004a). Synthesis of a fragment of bacterial cell wall. Journal of Organic Chemistry, 69, 2137–2146. DOI: 10.1021/jo035583k. http://dx.doi.org/10.1021/jo035583k10.1021/jo035583kSuche in Google Scholar PubMed

[9] Hesek, D., Suvorov, M., Morio, K.-I., Lee, M., Brown, S., Vakulenko, S. B., & Mobashery, S. (2004b). Synthetic peptidoglycan substrates for penicillin-binding protein 5 of gramnegative bacteria. Journal of Organic Chemistry, 69, 778–784. DOI: 10.1021/jo035397e. http://dx.doi.org/10.1021/jo035397e10.1021/jo035397eSuche in Google Scholar PubMed

[10] Horning, R. H., & Amstutz, E. D. (1955). The preparation of some dialkyl pyridazines. Journal of Organic Chemistry, 20, 707–713. DOI: 10.1021/jo01124a003. http://dx.doi.org/10.1021/jo01124a00310.1021/jo01124a003Suche in Google Scholar

[11] Meroueh, S. O., Bencze, K. Z., Hesek, D., Lee, M., Fisher, J. F., Stemmler, T. L., & Mobashery, S. (2006). Three-dimensional structure of the bacterial cell wall peptidoglycan. Proceedings of the National Academy of Sciences of the United States of America, 103, 4404–4409. DOI: 10.1073/pnas.0510182103. http://dx.doi.org/10.1073/pnas.051018210310.1073/pnas.0510182103Suche in Google Scholar PubMed PubMed Central

[12] Perez-Dorado, I., Campillo, N. E., Monterroso, B., Hesek, D., Lee, M., Paez, J. A., Garcia, P., Martinez-Ripoll, M., Garcia, J. L., Mobashery, S., Menendez, M., & Hermoso, J. A. (2007). Elucidation of the molecular recognition of bacterial cell wall by modular pneumococcal phage endolysin CPL-1. Journal of Biological Chemistry, 282, 24990–24999. DOI: 10.1074/jbc.M704317200. http://dx.doi.org/10.1074/jbc.M70431720010.1074/jbc.M704317200Suche in Google Scholar PubMed

[13] Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, 64, 112–122. DOI: 10.1107/S0108767307043930. http://dx.doi.org/10.1107/S010876730704393010.1107/S0108767307043930Suche in Google Scholar PubMed

[14] Steck, E. A., Brundage, R. P., & Fletcher, L. T. (1954). Pyridazine derivatives. 3. Some 3,6-disubstituted pyridazines having neuromuscular blocking activity. Journal of the American Chemical Society, 76, 4454–4457. DOI: 10.1021/ja01646a050. http://dx.doi.org/10.1021/ja01646a05010.1021/ja01646a050Suche in Google Scholar

Published Online: 2009-8-25
Published in Print: 2009-10-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Magnetic nano- and microparticles in biotechnology
  2. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
  3. Copper determination using ICP-MS with hexapole collision cell
  4. Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
  5. Robust stabilization of a chemical reactor
  6. Influence of production progress on the heavy metal content in flax fibers
  7. In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
  8. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
  9. Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
  10. Characterization of mechanochemically synthesized lead selenide
  11. Hydroxyapatite modified with silica used for sorption of copper(II)
  12. Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
  13. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
  14. Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
  15. Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
  16. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
  17. Gas chromatographic retention times prediction for components of petroleum condensate fraction
  18. Gas chromatography with surface ionization detection of nitro pesticides
  19. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
  20. Aqueous foam stabilized by polyoxyethylene dodecyl ether
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0048-0/pdf
Button zum nach oben scrollen