Home Physical Sciences Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
Article
Licensed
Unlicensed Requires Authentication

Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I

  • Barbara Koch , Shaio Tong Kong , Özgül Gün , Hans-Jörg Deiseroth EMAIL logo and Hellmut Eckert EMAIL logo
Published/Copyright: October 29, 2021

Abstract

A comprehensive multinuclear (7Li, 31P, 75As, 77Se, 127I) NMR study has been conducted to characterize local structural configurations and atomic distributions in the crystallographically ordered solid solutions of composition Li6PS5-x Se x I (0 ≤ x ≤ 1) and in Li6AsS5I. Throughout the composition range, structural ordering between the atoms on the Wyckoff sites 4a and 4c is maintained, with the I ions exclusively occupying the 4a sites. 31P magic-angle spinning nuclear magnetic resonance (MAS NMR) can serve to differentiate between the various possible PS4-n Se n 3− tetrahedral units in a quantitative fashion, indicating a preference of P-S relative to P-Se bonding. Each individual PS4-n Se n 3− tetrahedron is represented by a peak cluster containing up to five resonances, representing the five different configurations in which the PCh4 3− units are surrounded by the four closest chalcogenide anions occupying the 4c sites; the distribution of S2− and Se2− over these sites is close to statistical. Non-linear 7Li chemical shift trends as a function of x are interpreted to indicate that the Coulombic traps created by sulfur-rich PS4-n Se n 3− ions (n ≥ 2) within the energy landscape of the lithium ions are deeper than those of the other anionic species present (i.e. selenium-richer PCh4 3− tetrahedra, isolated chalcogenide or iodide ions), causing the Li+ ions to spend on average more time near them. Temperature dependent static 7Li NMR linewidths measured on Li6PS5I and Li6AsS5I indicate a two-step motional narrowing process characterized by a clear dynamic distinction between a more rapid localized intra-cage process and a slower, long-range inter-cage process. In the solid solutions this differentiation gradually disappears, leading to an overall increase of lithium ionic mobility with increasing selenium content, which can be attributed to the influences of higher anionic polarizability and a widening of the lithium migration pathways caused by lattice expansion. Furthermore, the low-temperature phase transition in Li6PS5I, which tends to immobilize the lithium ions below 170 K, is suppressed in the solid solutions. The results offer interesting new insights into the -structure/ionic mobility correlations in this new class of compounds.


Corresponding authors: Hans-Jörg Deiseroth, Institut für Anorganische Chemie, Universität Siegen, Adolf-Reichwein-Str., 57068 Siegen, Germany, E-mail: ; and Hellmut Eckert, Institut für Physikalische Chemie, WWU Münster, Corrensstraße 30, D 48149 Münster, Germany; and São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador Sãocarlense 400, São Carlos, SP 13566-590, Brazil, E-mail:
Dedicated to Paul Heitjans on the occasion of his 75th birthday.

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: SFB 458

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Funding by the Deutsche Forschungsgemeinschaft, SFB 458 (2000–2009), is most gratefully acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zheng, F., Kotobuki, M., Song, S., Lai, M. O., Li, L. J. Power Sources 2018, 389, 198; https://doi.org/10.1016/j.jpowsour.2018.04.022.Search in Google Scholar

2. Wu, Z., Xie, Z., Yoshida, A., Wang, Z., Hao, X., Abudula, A., Guan, G. Renew. Sustain. Energy Rev. 2019, 109, 367; https://doi.org/10.1016/j.rser.2019.04.035.Search in Google Scholar

3. Chen, S., Xie, D., Liu, G., Mwizerwa, J. P., Zhang, Q., Zhao, Y., Xu, X., Yao, X. Energy Storage Mater. 2018, 14, 58; https://doi.org/10.1016/j.ensm.2018.02.020.Search in Google Scholar

4. Kuhs, W. P., Nitsche, R., Scheunemann, K. Acta Crystallogr. 1978, B34, 64; https://doi.org/10.1107/s0567740878002307.Search in Google Scholar

5. Kuhs, W. P., Nitsche, R., Scheunemann, K. Mater. Res. Bull. 1979, 14, 241; https://doi.org/10.1016/0025-5408(79)90125-9.Search in Google Scholar

6. Belin, R., Aldon, L., Zerouale, A., Belin, C., Ribes, M. Solid State Sci. 2001, 3, 251; https://doi.org/10.1016/s1293-2558(00)01108-0.Search in Google Scholar

7. Evain, M., Gaudin, E., Boucher, F., Petricek, V., Taulelle, F. Acta Crystallogr. 1998, B54, 376; https://doi.org/10.1107/s0108768197019654.Search in Google Scholar

8. Gaudin, E., Bouchez, F., Petricek, V., Taulelle, F., Evain, M. Acta Crystallogr. 2000, B56, 402; https://doi.org/10.1107/s0108768199016614.Search in Google Scholar

9. Gaudin, B., Petricek, V., Boucher, F., Taulelle, F., Evain, M. Acta Crstallogr. 2000, B56, 972; https://doi.org/10.1107/s0108768100010260.Search in Google Scholar

10. Fiechter, S., Gmelin, E. Thermochim. Acta 1985, 85, 155; https://doi.org/10.1016/0040-6031(85)85553-2.Search in Google Scholar

11. Brice, J. F. Compt. Rend. C 1976, 283, 581.Search in Google Scholar

12. Deiseroth, H. J., Kong, S. T., Eckert, H., Vannahme, J., Reiner, C., Zaiß, T., Schlosser, M. Angew. Chem. Int. Ed. 2008, 47, 755; https://doi.org/10.1002/anie.200703900.Search in Google Scholar PubMed

13. Kong, S. T., Koch, B., Gün, Ö., Deiseroth, H. J., Eckert, H., Reiner, C. Chem. Eur. J. 2010, 16, 5138; https://doi.org/10.1002/chem.200903023.Search in Google Scholar PubMed

14. Kong, S. T., Deiseroth, H. J., Reiner, C., Gün, Ö., Neumann, E., Ritter, C., Zahn, D. Chem. Eur. J. 2010, 16, 2198; https://doi.org/10.1002/chem.200902470.Search in Google Scholar PubMed

15. Deiseroth, H. J., Maier, J., Weichert, K., Nickel, V., Kong, S. T., Reiner, C. Z. Anorg. Allg. Chem. 2011, 637, 1287; https://doi.org/10.1002/zaac.201100158.Search in Google Scholar

16. Yubuchi, S., Uematsu, M., Deguchi, M., Hayashi, A., Tatsumisago, M. ACS Appl. Energy Mater. 2018, 1, 3622; https://doi.org/10.1021/acsaem.8b00280.Search in Google Scholar

17. Ziolkowska, D., Arnold, W., Druffel, T., Sunkara, M., Wang, H. ACS Appl. Mater. Interfaces 2019, 11, 6015; https://doi.org/10.1021/acsami.8b19181.Search in Google Scholar PubMed

18. Zhang, Z., Sun, Y., Duan, X., Peng, L., Jia, H., Zhang, Y., Shan, B., Xie, J. J. Mater. Chem. A 2019, 6.Search in Google Scholar

19. Arnold, W., Buchberger, D. A., Li, Y., Sunkara, M., Druffel, T., Wang, H. J. Power Sources 2020, 464, 228158; https://doi.org/10.1016/j.jpowsour.2020.228158.Search in Google Scholar

20. Rao, R. P., Sharma, N., Peterson, V. K., Adams, S. Solid State Ion. 2013, 230, 72; https://doi.org/10.1016/j.ssi.2012.09.014.Search in Google Scholar

21. Maughan, A. E., Ha, Y., Pekarek, R. T., Schulze, M. C. Chem. Mater. 2021, 33, 5127; https://doi.org/10.1021/acs.chemmater.1c01170.Search in Google Scholar

22. Bernges, T., Culver, S. P., Minafra, N., Koerver, R., Zeier, W. G. Inorg. Chem. 2018, 57, 13920; https://doi.org/10.1021/acs.inorgchem.8b02443.Search in Google Scholar PubMed

23. Schlem, R., Ghidiu, M., Culver, S. P., Hansen, A. L., Zeier, W. G. ACS Appl. Energy Mater. 2020, 3, 9; https://doi.org/10.1021/acsaem.9b01794.Search in Google Scholar

24. Stamminger, A. R., Ziebarth, B., Mrovec, M., Hammerschmidt, T., Drautz, R. Chem. Mater. 2019, 31, 8673; https://doi.org/10.1021/acs.chemmater.9b02047.Search in Google Scholar

25. Kraft, M. A., Ohno, S., Zinkevich, T., Koerver, T., Culver, S. P., Fuchs, T., Senyshyn, A., Indris, S., Morgan, B. J., Zeier, W. G. J. Am. Chem. Soc. 2018, 140, 16330; https://doi.org/10.1021/jacs.8b10282.Search in Google Scholar PubMed

26. Kraft, M. A., Culver, S. P., Calderon, M., Böcher, F., Krauskopf, T., Senyshyn, A., Dietrich, C., Zevalkink, A., Janek, J., Zeier, W. G. J. Am. Chem. Soc. 2017, 139, 10909; https://doi.org/10.1021/jacs.7b06327.Search in Google Scholar PubMed

27. Gautam, A., Ghidiu, M., Suard, E., Kraft, M., Zeier, W. G. ACS Appl. Energy Mater. 2021, 4, 7309; https://doi.org/10.1021/acsaem.1c01417.Search in Google Scholar

28. Zhou, L., Minafra, N., Zeier, W. G., Nazar, L. F. Acc. Chem. Res. 2021, 54, 2717; https://doi.org/10.1021/acs.accounts.0c00874.Search in Google Scholar PubMed

29. Gautam, A., Sadowski, M., Ghidiu, M., Minafra, N., Senyshyn, A., Albe, K., Zeier, W. G. Adv. Energy Mater. 2021, 11, 2003369; https://doi.org/10.1002/aenm.202003369.Search in Google Scholar

30. Minafra, N., Hogrefe, K., Barbon, F., Helm, B., Li, C., Wilkening, H. M. R., Zeier, W. G. Chem. Mater. 2021, 33, 727; https://doi.org/10.1021/acs.chemmater.0c04150.Search in Google Scholar

31. Minafra, N., Kraft, M. A., Bernges, T., Li, C., Schlem, R., Morgan, B. J., Zeier, W. G. Inorg. Chem. 2020, 59, 11009; https://doi.org/10.1021/acs.inorgchem.0c01504.Search in Google Scholar PubMed

32. Gautam, A., Sadowski, M., Prins, N., Eickhoff, H., Minafra, N., Ghidiu, M., Culver, S. P., Albe, K., Fässler, T., Zobel, M., Zeier, W. G. Chem. Mater. 2019, 31, 10178; https://doi.org/10.1021/acs.chemmater.9b03852.Search in Google Scholar

33. Ohno, S., Helm, B., Fuchs, T., Dewald, G., Kraft, M., Culver, S. P., Senyshyn, A., Zeier, W. G. Chem. Mater. 2019, 31, 4936; https://doi.org/10.1021/acs.chemmater.9b01857.Search in Google Scholar

34. Zhang, J., Li, L., Zheng, C., Xia, Y., Gan, Y., Huang, H., Liang, C., He, X., Tao, X., Zhang, W. ACS Appl. Mater. Interfaces 2020, 12, 41538; https://doi.org/10.1021/acsami.0c11683.Search in Google Scholar PubMed

35. Ganapathy, S., Yu, C., van Eck, E. R. H., Wagemaker, M. ACS Energy Lett. 2019, 4, 1092; https://doi.org/10.1021/acsenergylett.9b00610.Search in Google Scholar

36. Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G., Janek, J. Solid State Ion. 2018, 318, 102; https://doi.org/10.1016/j.ssi.2017.07.005.Search in Google Scholar

37. Chen, M., Yin, X., Reddy, M. V., Adams, S. J. Mater. Chem. A 2015, 20.Search in Google Scholar

38. Chida, S., Miura, A., Rosero-Navarro, N. C., Higuchi, M., Phuc, N. H. H., Muto, H., Matsuda, A., Tadanaga, K. Ceram. Int. 2018, 44, 742; https://doi.org/10.1016/j.ceramint.2017.09.241.Search in Google Scholar

39. Chen, M., Adams, S. J. Solid State Electrochem. 2015, 19, 697; https://doi.org/10.1007/s10008-014-2654-1.Search in Google Scholar

40. Chen, M., Rayavarapu, P. R., Adams, S. Solid State Ion. 2014, 268, 300; https://doi.org/10.1016/j.ssi.2014.05.004.Search in Google Scholar

41. Li, Y., Arnold, W., Thapa, A., Jasinski, J. B., Sumanasekera, G., Sunkara, M., Druffel, T., Wang, H. ACS Appl. Mater. Interfaces 2020, 12, 42653; https://doi.org/10.1021/acsami.0c08261.Search in Google Scholar PubMed

42. Jiang, Z., Peng, H., Liu, Y., Zhong, Y., Wang, X., Xia, X., Gu, C., Tu, J. ACS Adv. Energy Mater 2021, 11, 2101521; https://doi.org/10.1002/aenm.202101521.Search in Google Scholar

43. Stadler, F., Fietzek, C. ECS Trans. 2020, 25, 177.10.1149/1.3393854Search in Google Scholar

44. Song, Y. B., Kim, D. H., Kwak, H., Han, D., Kang, S., Lee, J. H., Bak, S. M., Nam, K. W., Lee, H. W., Jung, Y. S. Nano Lett. 2020, 20, 4337; https://doi.org/10.1021/acs.nanolett.0c01028.Search in Google Scholar PubMed

45. Pecher, O., Kong, S. T., Goebel, T., Nickel, V., Weichert, K., Reiner, C., Deiseroth, H. J., Maier, J., Haarmann, F., Zahn, D. Chem. Eur. J. 2010, 16, 8347; https://doi.org/10.1002/chem.201000501.Search in Google Scholar PubMed

46. De Clerk, N. J. J., Roslon, I., Wagemaker, M. Chem. Mater. 2016, 28, 7955.10.1021/acs.chemmater.6b03630Search in Google Scholar

47. Morgan, B. J. Chem. Mater. 2021, 33, 2004; https://doi.org/10.1021/acs.chemmater.0c03738.Search in Google Scholar PubMed PubMed Central

48. Epp, V., Gün, Ö., Deiseroth, H. J., Wilkening, M. J. Phys. Chem. Lett. 2013, 4, 2118; https://doi.org/10.1021/jz401003a.Search in Google Scholar

49. Epp, V., Gün, Ö., Deiseroth, H. J., Wilkening, M. Phys. Chem. Chem. Phys. 2013, 15, 7121; https://doi.org/10.1039/c3cp44379e.Search in Google Scholar PubMed

50. Yu, C., Ganapathy, S., van Eck, E. R. H., van Eijck, L., Basak, S., Liu, Y., Zhang, L., Zandbergen, H. W., Wagemaker, M. J. Mater. Chem. A 2017, 5, 21178; https://doi.org/10.1039/c7ta05031c.Search in Google Scholar

51. Yu, C., Ganapathy, S., van Eck, E. R. H., Wange, H., Basak, S., Li, Z., Wagemaker, M. Nat. Commun. 2017, 8, 2086; https://doi.org/10.1038/s41467-017-01187-y.Search in Google Scholar PubMed PubMed Central

52. Wang, H., Yu, C., Ganapathy, S., van Eck, E. R. H., van Eijck, L., Wagemaker, M. J. Power Sources 2019, 412, 29; https://doi.org/10.1016/j.jpowsour.2018.11.029.Search in Google Scholar

53. Brinek, M., Hiebl, C., Wilkening, H. M. R. Chem. Mater. 2020, 32, 4754; https://doi.org/10.1021/acs.chemmater.0c01367.Search in Google Scholar PubMed PubMed Central

54. Brinek, M., Hiebl, C., Hogrefe, K., Hanghofer, I., Wilkening, H. M. R. J. Phys. Chem. 2020, 124, 22934; https://doi.org/10.1021/acs.jpcc.0c06090.Search in Google Scholar PubMed PubMed Central

55. Hanghofer, I., Gadermaier, B., Wilkening, H. M. R. Chem. Mater. 2019, 31, 4591; https://doi.org/10.1021/acs.chemmater.9b01435.Search in Google Scholar

56. Schlenker, R., Hansen, A. L., Senyshin, A., Zinkevich, T., Knapp, M., Hupfer, T., Ehrenberg, H., Indris, S. Chem. Mater. 2020, 32, 8420; https://doi.org/10.1021/acs.chemmater.0c02418.Search in Google Scholar

57. Yu, C., Ganapathy, S., de Klerk, N. J. J., Roslon, I., van Eck, E. R. H., Kentgens, A. P. M., Wagemaker, M. J. Am. Chem. Soc. 2016, 138, 11192; https://doi.org/10.1021/jacs.6b05066.Search in Google Scholar PubMed

58. Adeli, P., Bazak, J. D., Park, K. H., Kochetkov, I., Huq, A., Goward, G. R., Nazar, L. F. Angew. Chem. Int. Ed. 2019, 58, 8681; https://doi.org/10.1002/anie.201814222.Search in Google Scholar PubMed

59. Hanghofer, I., Brinek, M., Eisbacher, S. I., Bitschnau, B., Volck, M., Hennige, V., Hanzu, I., Rettenwander, D., Wilkening, H. M. R. Phys. Chem. Chem. Phys. 2019, 21, 8489; https://doi.org/10.1039/c9cp00664h.Search in Google Scholar PubMed

60. Koch, B. Festkörper-NMR-Studien zur Struktur und Kationenmobilität in kristallinen Lithiumionenleitern. Doctoral Dissertation; University of Münster, 2009.Search in Google Scholar

61. Kong, S. T. Synthesis, Characterization and Structural Chemistry of Lithium Argyrodites. Doctoral Dissertation; University of Siegen, 2011.Search in Google Scholar

62. Gün, Ö. Synthesis, Characterization and Structural Chemistry of Lithium Seleno Argyrodites. Doctoral Dissertation; University of Siegen, 2011.Search in Google Scholar

63. Maxwell, R., Lathrop, D., Franke, D., Eckert, H. Angew. Chem. Int. Ed. 1990, 29, 882; https://doi.org/10.1002/anie.199008821.Search in Google Scholar

64. Ohki, H., Harazono, K., Erata, T., Tasaki, A., Ikeda, R. Z. Naturforsch. 1993, 48a, 1005; https://doi.org/10.1515/zna-1993-1008.Search in Google Scholar

65. Gaudin, E., Boucher, F., Evain, M., Taulelle, F. Chem. Mater. 2000, 12, 1715; https://doi.org/10.1021/cm001011u.Search in Google Scholar

66. Koch, B., Kong, S. T., Gün, Ö., Deiseroth, H. J., Eckert, H. Z. Phys. Chem., submitted for publication.Search in Google Scholar

Received: 2021-09-25
Accepted: 2021-10-18
Published Online: 2021-10-29
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Downloaded on 17.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3135/html?lang=en
Scroll to top button