Abstract
Throughout history, metal-based coordination compounds have been used for medical purposes, including the treatment of various illnesses like cancer. Since the discovery of cisplatin in 1965, many other metal coordinating complexes have been developed and evaluated, involving metals such as platinum, iron, zinc, ruthenium, gold, silver, titanium, and copper. The goal behind these efforts is to create effective and safe medications. At the moment, there are a lot of studies talking about the use of cytostatic metal complexes, mainly on promising platinum- and non-platinum-based drugs in both preclinical and clinical trials. However, there is a lack of recent comprehensive studies that cover both the chemical and biological aspects of metal-based coordinating molecules in the context of cancer therapy. This review aims to provide a thorough analysis of the coordination chemistry of existing and innovative cytostatic substances. It will include a description of their design and synthesis, as well as a summary of the biochemical reactivity and physicochemical features of potential metal-containing complexes.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Ahmed, L. O.; Omer, R. A. Hydroxyapatite Biomaterials: A Comprehensive Review of Their Properties, Structures, Clinical Applications, and Producing Techniques. Rev. Inorg. Chem. 2024, 44 (4), 599–618; https://doi.org/10.1515/revic-2024-0018.Suche in Google Scholar
2. Algra, A. M.; Rothwell, P. M. Effects of Regular Aspirin on Long-Term Cancer Incidence and Metastasis: a Systematic Comparison of Evidence from Observational Studies Versus Randomised Trials. Lancet Oncol. 2012, 13518–13527. https://doi.org/10.1016/s1470-2045(12)70112-2.Suche in Google Scholar PubMed
3. Al-Obaidy, G. S.; Al Obaidy, G. S. A Review for the Coordination Compounds in the Human Body and Some of its Clinical and Biological Aspects. World Bull. Public Health 2022, 137–215.Suche in Google Scholar
4. Banti, C. N.; Hadjikakou, S. K. Anti-proliferative and Anti-tumor Activity of Silver (I) Compounds. Metallomics 2013, 5569–5596. https://doi.org/10.1039/c3mt00046j.Suche in Google Scholar PubMed
5. Barry, N. P.; Sadler, P. J. Exploration of the Medical Periodic Table: towards New Targets. Chem. Commun. 2013, 495106–495131, https://doi.org/10.1039/c3cc41143e.Suche in Google Scholar PubMed
6. Biersack, B.; Ahmad, A.; Sarkar, H. F.; Schobert, R. Coinage Metal Complexes against Breast Cancer. Curr. Med. Chem. 2012, 193949–193956. https://doi.org/10.2174/092986712802002482.Suche in Google Scholar PubMed
7. Boechat, N.; Kover, W. B.; Bastos, M. M.; Romeiro, N. C.; Silva, A. S.; Santos, F. C.; Valverde, A. L.; Azevedo, M. L.; Wollinger, W.; Souza, T. M.; de Souza, S. L. O.; de Frugulhetti, I. C. P. P. Design, Synthesis, and Biological Evaluation of New 3-Hydroxy-2-Oxo-3-Trifluoromethylindole as Potential HIV-1 Reverse Transcriptase Inhibitors. Med. Chem. Res. 2007, 15492–15510. https://doi.org/10.1007/s00044-007-9004-0.Suche in Google Scholar
8. Bruijnincx, P. C.; Sadler, P. J. New Trends for Metal Complexes with Anticancer Activity. Curr. Opin. Chem. Biol. 2008, 12197–12206. https://doi.org/10.1016/j.cbpa.2007.11.013.Suche in Google Scholar PubMed PubMed Central
9. Che, C.-M.; Sun, R. W.-Y.; Yu, W.-Y.; Ko, C.-B.; Zhu, N.; Sun, H. Gold (III) Porphyrins as a New Class of Anticancer Drugs: Cytotoxicity, DNA Binding and Induction of Apoptosis in Human Cervix Epitheloid Cancer Cells. Chem. Commun. 2003, 1718–1719. https://doi.org/10.1039/b303294a.Suche in Google Scholar PubMed
10. El-Asmy, H. A.; Butler, I. S.; Mouhri, Z. S.; Jean-Claude, B. J.; Emmam, M. S.; Mostafa, S. I. Zinc (II), Ruthenium (II), Rhodium (III), Palladium (II), Silver (I), Platinum (II) and MoO22+ Complexes of 2-(2′-Hydroxy-5′-Methylphenyl)-Benzotriazole as Simple or Primary Ligand and 2, 2′-bipyridyl, 9, 10-phenanthroline or Triphenylphosphine as Secondary Ligands: Structure and Anticancer Activity. J. Mol. Struct. 2014, 1059193–1059201.10.1016/j.molstruc.2013.11.039Suche in Google Scholar
11. Fries, J. F.; Bloch, D.; Spitz, P.; Mitchell, D. M. Cancer in Rheumatoid Arthritis: a Prospective Long-Term Study of Mortality. Am. J. Med. 1985, 7856–7859. https://doi.org/10.1016/0002-9343(85)90247-5.Suche in Google Scholar PubMed
12. Gârban, Z.; Silaghi-Dumitrescu, R.; Gârban, G.; Avacovici, A.; Hădărugă, N.; Baltă, C.; Ghibu, G.-D.; Bischin, C.; Rada, O.-A. Metallomics Related to Gallium Compounds: Biochemical and Xenobiochemical Aspects. Maced. J. Chem. Chem. Eng. 2014, 3339–3352. https://doi.org/10.20450/mjcce.2014.131.Suche in Google Scholar
13. Geldmacher, Y.; Oleszak, M.; Sheldrick, W. S. Rhodium (III) and Iridium (III) Complexes as Anticancer Agents. Inorg. Chim. Acta. 2012, 39384–40102. https://doi.org/10.1016/j.ica.2012.06.046.Suche in Google Scholar
14. Gromer, S.; Arscott, L. D.; Williams, C. H.; Schirmer, R. H.; Becker, K. Human Placenta Thioredoxin Reductase: Isolation of the Selenoenzyme, Steady State Kinetics, and Inhibition by Therapeutic Gold Compounds. J. Biol. Chem. 1998, 27320096–27320101. https://doi.org/10.1074/jbc.273.32.20096.Suche in Google Scholar PubMed
15. Hossain, M. S.; Roy, P. K.; Ali, R.; Zakaria, C.; Kudrat-E-Zahan, M. Selected Pharmacological Applications of 1st Row Transition Metal Complexes: A Review. Clin. Med. Res. 2017, 6177–6191.Suche in Google Scholar
16. Jung, M.; Mertens, C.; Tomat, E.; Brüne, B. Iron as a Central Player and Promising Target in Cancer Progression. Int. J. Mol. Sci. 2019, 20273. https://doi.org/10.3390/ijms20020273.Suche in Google Scholar PubMed PubMed Central
17. Katsaros, N.; Anagnostopoulou, A. Rhodium and its Compounds as Potential Agents in Cancer Treatment. Crit. Rev. Oncol.-Hematol. 2002, 42 (3), 297–308; https://doi.org/10.1016/s1040-8428(01)00222-0.Suche in Google Scholar PubMed
18. Klug, A. The Discovery of Zinc Fingers and Their Applications in Gene Regulation and Genome Manipulation. Annu. Rev. Biochem. 2010, 79213–79231. https://doi.org/10.1146/annurev-biochem-010909-095056.Suche in Google Scholar PubMed
19. Kouodom, M. N.; Boscutti, G.; Celegato, M.; Crisma, M.; Sitran, S.; Aldinucci, D.; Formaggio, F.; Ronconi, L.; Fregona, D. Rational Design of Gold (III)-dithiocarbamato Peptidomimetics for the Targeted Anticancer Chemotherapy. J. Inorg. Biochem. 2012, 117, 248–260; https://doi.org/10.1016/j.jinorgbio.2012.07.001.Suche in Google Scholar PubMed
20. Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper Coordination Compounds as Biologically Active Agents. Int. J. Mol. Sci. 2020, 213965. https://doi.org/10.3390/ijms21113965.Suche in Google Scholar PubMed PubMed Central
21. Kyros, L.; Banti, C.; Kourkoumelis, N.; Kubicki, M.; Sainis, I.; Hadjikakou, S. Synthesis, Characterization, and Binding Properties towards CT-DNA and Lipoxygenase of Mixed-Ligand Silver (I) Complexes with 2-Mercaptothiazole and its Derivatives and Triphenylphosphine. JBIC, J. Biol. Inorg. Chem. 2014, 19449–19464. https://doi.org/10.1007/s00775-014-1089-6.Suche in Google Scholar PubMed
22. Lin, M.; Cao, Y.; Pei, H.; Chen, Y.; Wu, J.; Li, Y.; Liu, W. Titanium Isopropoxide Complexes Supported by Pyrrolyl Schiff Base Ligands: Syntheses, Structures, and Antitumor Activity. RSC Adv. 2014, 49255–49260. https://doi.org/10.1039/c3ra45823g.Suche in Google Scholar
23. Lu, G.-L.; Stevenson, R. J.; Chang, J. Y.-C.; Brothers, P. J.; Ware, D. C.; Wilson, W. R.; Denny, W. A.; Tercel, M. N-Alkylated Cyclen Cobalt (III) Complexes of 1-(chloromethyl)-3-(5, 6, 7-Trimethoxyindol-2-Ylcarbonyl)-2, 3-Dihydro-1h-Pyrrolo [3, 2-f] Quinolin-5-Ol DNA Alkylating Agent as Hypoxia-Activated Prodrugs. Bioorg. Med. Chem. 2011, 194861–194867. https://doi.org/10.1016/j.bmc.2011.06.076.Suche in Google Scholar PubMed
24. Mahapatra, D. K.; Bharti, S. K.; Asati, V.; Singh, S. K. Perspectives of Medicinally Privileged Chalcone Based Metal Coordination Compounds for Biomedical Applications. Eur. J. Med. Chem. 2019, 174142–174158. https://doi.org/10.1016/j.ejmech.2019.04.032.Suche in Google Scholar PubMed
25. Marcon, G.; Carotti, S.; Coronnello, M.; Messori, L.; Mini, E.; Orioli, P.; Mazzei, T.; Cinellu, M. A.; Minghetti, G. Gold (III) Complexes with Bipyridyl Ligands: Solution Chemistry, Cytotoxicity, and DNA Binding Properties. J. Med. Chem. 2002, 451672–451677. https://doi.org/10.1021/jm010997w.Suche in Google Scholar PubMed
26. Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V. M.; Lachowicz, J. I.; Remelli, M.; Zoroddu, M. A. Silver Coordination Compounds: A New Horizon in Medicine. Coord. Chem. Rev. 2016, 327349–327359. https://doi.org/10.1016/j.ccr.2016.05.015.Suche in Google Scholar
27. Meléndez, E. Titanium Complexes in Cancer Treatment. Crit. Rev. Oncol.-Hematol. 2002, 42309–42315. https://doi.org/10.1016/s1040-8428(01)00224-4.Suche in Google Scholar PubMed
28. Milacic, V.; Chen, D.; Ronconi, L.; Landis-Piwowar, K. R.; Fregona, D.; Dou, Q. P. A Novel Anticancer Gold (III) Dithiocarbamate Compound Inhibits the Activity of a Purified 20S Proteasome and 26S Proteasome in Human Breast Cancer Cell Cultures and Xenografts. Cancer Res. 2006, 6610478–6610486. https://doi.org/10.1158/0008-5472.can-06-3017.Suche in Google Scholar PubMed
29. Mjos, K. D.; Orvig, C. Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev. 2014, 114 (8), 4540–4563; https://doi.org/10.1021/cr400460s.Suche in Google Scholar PubMed
30. Oehninger, L.; Küster, L.N.; Schmidt, C.; Muñoz‐Castro, A.; Prokop, A.; Ott, I. A Chemical–Biological Evaluation of Rhodium (I) N‐Heterocyclic Carbene Complexes as Prospective Anticancer Drugs. Chem. Eur. J. 2013, 1917871–1917880. https://doi.org/10.1002/chem.201302819.Suche in Google Scholar PubMed
31. Orlowski, R. Z. The Role of the Ubiquitin-Proteasome Pathway in Apoptosis. Cell Death Differ. 1999, 6303–6313. https://doi.org/10.1038/sj.cdd.4400505.Suche in Google Scholar PubMed
32. Ott, I.; Gust, R. Non Platinum Metal Complexes as Anti‐cancer Drugs. Arch. Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry 2007, 340 (3), 117–126; https://doi.org/10.1002/ardp.200600151.Suche in Google Scholar PubMed
33. Pessoa, J. C.; Etcheverry, S.; Gambino, D. Vanadium Compounds in Medicine. Coord. Chem. Rev. 2015, 30124–30148. https://doi.org/10.1016/j.ccr.2014.12.002.Suche in Google Scholar PubMed PubMed Central
34. Pranczk, J.; Jacewicz, D.; Wyrzykowski, D.; Chmurzynski, L. Platinum (II) and Palladium (II) Complex Compounds as Anti-cancer Drugs. Methods of Cytotoxicity Determination. Curr. Pharmaceut. Anal. 2014, 102–109. https://doi.org/10.2174/157341291001140102103324.Suche in Google Scholar
35. Psomas, G. Copper (II) and Zinc (II) Coordination Compounds of Non-steroidal Anti-inflammatory Drugs: Structural Features and Antioxidant Activity. Coord. Chem. Rev. 2020, 412213259. https://doi.org/10.1016/j.ccr.2020.213259.Suche in Google Scholar
36. Raducka, A.; Świątkowski, M.; Korona-Głowniak, I.; Kaproń, B.; Plech, T.; Szczesio, M.; Gobis, K.; Szynkowska-Jóźwik, M. I.; Czylkowska, A. Zinc Coordination Compounds with Benzimidazole Derivatives: Synthesis, Structure, Antimicrobial Activity and Potential Anticancer Application. Int. J. Mol. Sci. 2022, 236595. https://doi.org/10.3390/ijms23126595.Suche in Google Scholar PubMed PubMed Central
37. Raman, N.; Sobha, S.; Mitu, L. Synthesis, Structure Elucidation, DNA Interaction, Biological Evaluation, and Molecular Docking of an Isatin-Derived Tyramine Bidentate Schiff Base and its Metal Complexes. Monatshefte für Chemie-Chemical Monthly 2012, 1431019–1431030. https://doi.org/10.1007/s00706-011-0699-8.Suche in Google Scholar
38. Rehder, D. Vanadium. Its Role for Humans. Interrelations Between Essential Metal Ions and Human Diseases, 2013; pp 139–169.10.1007/978-94-007-7500-8_5Suche in Google Scholar PubMed PubMed Central
39. Rufino-González, Y.; Ponce-Macotela, M.; García-Ramos, J. C.; Martínez-Gordillo, M. N.; Galindo-Murillo, R.; González-Maciel, A.; Reynoso-Robles, R.; Tovar-Tovar, A.; Flores-Alamo, M.; Toledano-Magaña, Y.; Ruiz-Azuara, L. Antigiardiasic Activity of Cu (II) Coordination Compounds: Redox Imbalance and Membrane Damage after a Short Exposure Time. J. Inorg. Biochem. 2019, 19583–19590. https://doi.org/10.1016/j.jinorgbio.2019.03.012.Suche in Google Scholar PubMed
40. Schwietert, C. W.; McCue, J. P. Coordination Compounds in Medicinal Chemistry. Coord. Chem. Rev. 1999, 18467–18489. https://doi.org/10.1016/s0010-8545(98)00205-7.Suche in Google Scholar
41. Silva, A.; Luís, D.; Santos, S.; Silva, J.; Mendo, A. S.; Coito, L.; Silva, T. F.; da Silva, M. F. C. G.; Martins, L. M.; Pombeiro, A. J.; Borralho, P. M.; Rodrigues, C. M.; Cabral, M. G.; Videira, P. A.; Monteiro, C.; Fernandes, A. R. Biological Characterization of the Antiproliferative Potential of Co (II) and Sn (IV) Coordination Compounds in Human Cancer Cell Lines: a Comparative Proteomic Approach. Drug Metabol. Drug Interact. 2013, 28, 167–176. https://doi.org/10.1515/dmdi-2013-0015.Suche in Google Scholar PubMed
42. Silva, T. F.; Smoleński, P.; Martins, L. M.; Guedes da Silva, M. F. C.; Fernandes, A. R.; Luis, D.; Silva, A.; Santos, S.; Borralho, P. M.; Rodrigues, C. M.; Pombeiro, A. J. L. Cobalt and Zinc Compounds Bearing 1, 10‐Phenanthroline‐5, 6‐dione or 1, 3, 5‐Triaza‐7‐phosphaadamantane Derivatives–Synthesis, Characterization, Cytotoxicity, and Cell Selectivity Studies. Eur. J. Inorg. Chem. 2013, 20133651–20133658. https://doi.org/10.1002/ejic.201300197.Suche in Google Scholar
43. Singh, V. K.; Singh, V. K.; Mishra, A.; Singh, A. A.; Prasad, G.; Singh, A. K. Recent Advancements in Coordination Compounds and Their Potential Clinical Application in the Management of Diseases: An Up-To-Date Review. Polyhedron 2023, 116485.10.1016/j.poly.2023.116485Suche in Google Scholar
44. Sun, R. W.-Y.; Ma, D.-L.; Wong, E. L.-M.; Che, C.-M. Some Uses of Transition Metal Complexes as Anti-cancer and Anti-HIV Agents. Dalton Trans. 2007, 4884–4892. https://doi.org/10.1039/b705079h.Suche in Google Scholar PubMed
45. Tan, S. J.; Yan, Y. K.; Lee, P. P. F.; Lim, K. H. Copper, Gold and Silver Compounds as Potential New Anti-tumor Metallodrugs. Future Med. Chem. 2010, 21591–21608. https://doi.org/10.4155/fmc.10.234.Suche in Google Scholar PubMed
46. Thompson, K. H.; Orvig, C. Boon and Bane of Metal Ions in Medicine. Science 2003, 300936–300939. https://doi.org/10.1126/science.1083004.Suche in Google Scholar PubMed
47. Tiekink, E. R. Gold Derivatives for the Treatment of Cancer. Crit. Rev. Oncol.-Hematol. 2002, 42225–42248. https://doi.org/10.1016/s1040-8428(01)00216-5.Suche in Google Scholar PubMed
48. Trudu, F.; Amato, F.; Vaňhara, P.; Pivetta, T.; Peña-Méndez, E.; Havel, J. Coordination Compounds in Cancer: Past, Present and Perspectives. J. Appl. Biomed. 2015, 1379–2103. https://doi.org/10.1016/j.jab.2015.03.003.Suche in Google Scholar
49. Wang, X.; Guo, Z. Towards the Rational Design of Platinum (II) and Gold (III) Complexes as Antitumour Agents. Dalton Trans. 2008, 1521–1532. https://doi.org/10.1039/b715903j.Suche in Google Scholar PubMed
50. Wang, N. X.; von Recum, H. A. Affinity‐based Drug Delivery. Macromol. Biosci. 2011, 11321–11332. https://doi.org/10.1002/mabi.201000206.Suche in Google Scholar PubMed
51. Wang, Y.; He, Q.-Y.; Sun, R. W.-Y.; Che, C.-M.; Chiu, J.-F. Gold (III) Porphyrin 1a Induced Apoptosis by Mitochondrial Death Pathways Related to Reactive Oxygen Species. Cancer Res. 2005, 6511553–6511564. https://doi.org/10.1158/0008-5472.can-05-2867.Suche in Google Scholar
52. Yu, Y.; Kalinowski, D. S.; Kovacevic, Z.; Siafakas, A. R.; Jansson, P. J.; Stefani, C.; Lovejoy, D. B.; Sharpe, P. C.; Bernhardt, P. V.; Richardson, D. R. Thiosemicarbazones from the Old to New: Iron Chelators that Are More Than Just Ribonucleotide Reductase Inhibitors. J. Med. Chem. 2009, 525271–525294. https://doi.org/10.1021/jm900552r.Suche in Google Scholar PubMed
53. Zhong, H. J.; Leung, K. H.; Liu, L. J.; Lu, L.; Chan, D. S. H.; Leung, C. H.; Ma, D. L. Antagonism of mTOR Activity by a Kinetically Inert Rhodium (III) Complex. ChemPlusChem 2014, 79508–79511. https://doi.org/10.1002/cplu.201400014.Suche in Google Scholar PubMed
54. Zoroddu, M. A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V. M. The Essential Metals for Humans: a Brief Overview. J. Inorg. Biochem. 2019, 195120–195129. https://doi.org/10.1016/j.jinorgbio.2019.03.013.Suche in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
- Advanced synthetic routes of metal organic frameworks and their diverse applications
- Carbon materials derived by crystalline porous materials for capacitive energy storage
- BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
- Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
- Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
- Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
- Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
- Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
- Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
- Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
- A review of carbon-based adsorbents for the removal of organic and inorganic components
- Mercury removal from water: insights from MOFs and their composites
- Organometallic complexes and reaction methods for synthesis: a review
- Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Artikel in diesem Heft
- Frontmatter
- Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
- Advanced synthetic routes of metal organic frameworks and their diverse applications
- Carbon materials derived by crystalline porous materials for capacitive energy storage
- BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
- Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
- Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
- Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
- Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
- Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
- Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
- Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
- A review of carbon-based adsorbents for the removal of organic and inorganic components
- Mercury removal from water: insights from MOFs and their composites
- Organometallic complexes and reaction methods for synthesis: a review
- Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity