Home Comment on the paper: “Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet, M.R. Krishnamurthy, B.J. Gireesha, B.C. Prasannakumara, and Rama Subba Reddy Gorla, Nonlinear Engineering 2016, 5(3), 147-159”
Article Open Access

Comment on the paper: “Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet, M.R. Krishnamurthy, B.J. Gireesha, B.C. Prasannakumara, and Rama Subba Reddy Gorla, Nonlinear Engineering 2016, 5(3), 147-159”

  • Asterios Pantokratoras EMAIL logo
Published/Copyright: July 12, 2019
Become an author with De Gruyter Brill

Abstract

The present comment concerns some doubtful results included in the above paper.

In the above paper the concentration equation is as follows (equation 4 in [1])

uCx+vCy=DB2Cy2+DTT2Ty2k0(CC)(1)

In the above equation the units of each term are sec–1C. Therefore the units of k0 must be sec–1 in order that the term k0(CC) is compatible with the other terms in equation (1).

The non-dimensional chemical reaction parameter is defined as (equation 15 in [1])

y(y)=k0Lea(2)

Taking into account that the symbol used in figures is y it is clear that in equation (2) the correct symbol is y and y is a misprint. In equation (2)Le=νfDB is the dimensionless Lewis number and a is a constant which appears in the following equation

uw(x)=axn(3)

From equation (3) it is found that the units of a are

[a]=m1n(length)1nsec1(time)1

Therefore the units of chemical reaction parameter are

[y]=mn1(length)n1

This means that the chemical reaction parameter is dimensional, not dimensionless, as the authors claim. The chemical reaction parameter is dimensionless and correct only for the case n = 1. However, there are many results with n ≠ 1 in [1]. It is reminded here that the physical phenomena are treated with universal dimensionless numbers, not dimensional. See for example the view of Paul Dirac (Nobel Prize in Physics 1933) about dimensionless numbers in Buckley and Peat [2].

"Now, there is another dimensionless number which is of importance. If you have an electron and a proton, the electric force between them is inversely proportional to the square of the distance; the gravitational force is also inversely proportional to the square of the distance; the ratio of those two forces does not depend on the distance. The ratio gives you a dimensionless number. Of course it doesn’t depend on what units you’re using. It’s a number provided by nature and we should expect that a theory will some day provide a reason for it."

In conclusion the results in Krishnamurthy et al. [1] for n ≠ 1 are not correct.

References

[1] M.R. Krishnamurthy, B.J. Gireesha, B.C. Prasannakumara, and Rama Subba Reddy Gorla, “Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet”, Nonlinear Engineering, 5(3) (2016) 147-159.10.1515/nleng-2016-0013Search in Google Scholar

[2] P. Buckley(ed.), F.D. Peat(ed.) (1996) Glimpsing Reality: Ideas in Physics and Link to Biology, University of Toronto Press.Search in Google Scholar

Received: 2018-12-02
Accepted: 2018-12-14
Published Online: 2019-07-12
Published in Print: 2019-01-28

© 2019 Asterios Pantokratoras, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Articles in the same Issue

  1. Chebyshev Operational Matrix Method for Lane-Emden Problem
  2. Concentrating solar power tower technology: present status and outlook
  3. Control of separately excited DC motor with series multi-cells chopper using PI - Petri nets controller
  4. Effect of boundary roughness on nonlinear saturation of Rayleigh-Taylor instability in couple-stress fluid
  5. Effect of Heterogeneity on Imbibition Phenomena in Fluid Flow through Porous Media with Different Porous Materials
  6. Electro-osmotic flow of a third-grade fluid past a channel having stretching walls
  7. Heat transfer effect on MHD flow of a micropolar fluid through porous medium with uniform heat source and radiation
  8. Local convergence for an eighth order method for solving equations and systems of equations
  9. Numerical techniques for behavior of incompressible flow in steady two-dimensional motion due to a linearly stretching of porous sheet based on radial basis functions
  10. Influence of Non-linear Boussinesq Approximation on Natural Convective Flow of a Power-Law Fluid along an Inclined Plate under Convective Thermal Boundary Condition
  11. A reliable analytical approach for a fractional model of advection-dispersion equation
  12. Mass transfer around a slender drop in a nonlinear extensional flow
  13. Hydromagnetic Flow of Heat and Mass Transfer in a Nano Williamson Fluid Past a Vertical Plate With Thermal and Momentum Slip Effects: Numerical Study
  14. A Study on Convective-Radial Fins with Temperature-dependent Thermal Conductivity and Internal Heat Generation
  15. An effective technique for the conformable space-time fractional EW and modified EW equations
  16. Fractional variational iteration method for solving time-fractional Newell-Whitehead-Segel equation
  17. New exact and numerical solutions for the effect of suction or injection on flow of nanofluids past a stretching sheet
  18. Numerical investigation of MHD stagnation-point flow and heat transfer of sodium alginate non-Newtonian nanofluid
  19. A New Finance Chaotic System, its Electronic Circuit Realization, Passivity based Synchronization and an Application to Voice Encryption
  20. Analysis of Heat Transfer and Lifting Force in a Ferro-Nanofluid Based Porous Inclined Slider Bearing with Slip Conditions
  21. Application of QLM-Rational Legendre collocation method towards Eyring-Powell fluid model
  22. Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations
  23. MHD nonaligned stagnation point flow of second grade fluid towards a porous rotating disk
  24. Nonlinear Dynamic Response of an Axially Functionally Graded (AFG) Beam Resting on Nonlinear Elastic Foundation Subjected to Moving Load
  25. Swirling flow of couple stress fluid due to a rotating disk
  26. MHD stagnation point slip flow due to a non-linearly moving surface with effect of non-uniform heat source
  27. Effect of aligned magnetic field on Casson fluid flow over a stretched surface of non-uniform thickness
  28. Nonhomogeneous porosity and thermal diffusivity effects on stability and instability of double-diffusive convection in a porous medium layer: Brinkman Model
  29. Magnetohydrodynamic(MHD) Boundary Layer Flow of Eyring-Powell Nanofluid Past Stretching Cylinder With Cattaneo-Christov Heat Flux Model
  30. On the connection coefficients and recurrence relations arising from expansions in series of modified generalized Laguerre polynomials: Applications on a semi-infinite domain
  31. An adaptive mesh method for time dependent singularly perturbed differential-difference equations
  32. On stretched magnetic flow of Carreau nanofluid with slip effects and nonlinear thermal radiation
  33. Rational exponential solutions of conformable space-time fractional equal-width equations
  34. Simultaneous impacts of Joule heating and variable heat source/sink on MHD 3D flow of Carreau-nanoliquids with temperature dependent viscosity
  35. Effect of magnetic field on imbibition phenomenon in fluid flow through fractured porous media with different porous material
  36. Impact of ohmic heating on MHD mixed convection flow of Casson fluid by considering Cross diffusion effect
  37. Mathematical Modelling Comparison of a Reciprocating, a Szorenyi Rotary, and a Wankel Rotary Engine
  38. Surface roughness effect on thermohydrodynamic analysis of journal bearings lubricated with couple stress fluids
  39. Convective conditions and dissipation on Tangent Hyperbolic fluid over a chemically heating exponentially porous sheet
  40. Unsteady Carreau-Casson fluids over a radiated shrinking sheet in a suspension of dust and graphene nanoparticles with non-Fourier heat flux
  41. An efficient numerical algorithm for solving system of Lane–Emden type equations arising in engineering
  42. New numerical method based on Generalized Bessel function to solve nonlinear Abel fractional differential equation of the first kind
  43. Numerical Study of Viscoelastic Micropolar Heat Transfer from a Vertical Cone for Thermal Polymer Coating
  44. Analysis of Bifurcation and Chaos of the Size-dependent Micro–plate Considering Damage
  45. Non-Similar Comutational Solutions for Double-Diffusive MHD Transport Phenomena for Non-Newtnian Nanofluid From a Horizontal Circular Cylinder
  46. Mathematical model on distributed denial of service attack through Internet of things in a network
  47. Postbuckling behavior of functionally graded CNT-reinforced nanocomposite plate with interphase effect
  48. Study of Weakly nonlinear Mass transport in Newtonian Fluid with Applied Magnetic Field under Concentration/Gravity modulation
  49. MHD slip flow of chemically reacting UCM fluid through a dilating channel with heat source/sink
  50. A Study on Non-Newtonian Transport Phenomena in Mhd Fluid Flow From a Vertical Cone With Navier Slip and Convective Heating
  51. Penetrative convection in a fluid saturated Darcy-Brinkman porous media with LTNE via internal heat source
  52. Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity
  53. Semitrailer Steering Control for Improved Articulated Vehicle Manoeuvrability and Stability
  54. Thermomechanical nonlinear stability of pressure-loaded CNT-reinforced composite doubly curved panels resting on elastic foundations
  55. Combination synchronization of fractional order n-chaotic systems using active backstepping design
  56. Vision-Based CubeSat Closed-Loop Formation Control in Close Proximities
  57. Effect of endoscope on the peristaltic transport of a couple stress fluid with heat transfer: Application to biomedicine
  58. Unsteady MHD Non-Newtonian Heat Transfer Nanofluids with Entropy Generation Analysis
  59. Mathematical Modelling of Hydromagnetic Casson non-Newtonian Nanofluid Convection Slip Flow from an Isothermal Sphere
  60. Influence of Joule Heating and Non-Linear Radiation on MHD 3D Dissipating Flow of Casson Nanofluid past a Non-Linear Stretching Sheet
  61. Radiative Flow of Third Grade Non-Newtonian Fluid From A Horizontal Circular Cylinder
  62. Application of Bessel functions and Jacobian free Newton method to solve time-fractional Burger equation
  63. A reliable algorithm for time-fractional Navier-Stokes equations via Laplace transform
  64. A multiple-step adaptive pseudospectral method for solving multi-order fractional differential equations
  65. A reliable numerical algorithm for a fractional model of Fitzhugh-Nagumo equation arising in the transmission of nerve impulses
  66. The expa function method and the conformable time-fractional KdV equations
  67. Comment on the paper: “Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet, M.R. Krishnamurthy, B.J. Gireesha, B.C. Prasannakumara, and Rama Subba Reddy Gorla, Nonlinear Engineering 2016, 5(3), 147-159”
  68. Three-Dimensional Boundary layer Flow and Heat Transfer of a Fluid Particle Suspension over a Stretching Sheet Embedded in a Porous Medium
  69. MHD three dimensional flow of Oldroyd-B nanofluid over a bidirectional stretching sheet: DTM-Padé Solution
  70. MHD Convection Fluid and Heat Transfer in an Inclined Micro-Porous-Channel
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/nleng-2018-0183/html
Scroll to top button