Home Physical Sciences Crystal structure of catena-poly[triaqua-(μ2-1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-O,O′:O″)cobalt(II)], C12H12N2O8Co
Article Open Access

Crystal structure of catena-poly[triaqua-(μ2-1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-O,O′:O″)cobalt(II)], C12H12N2O8Co

  • Wen-Jun Liu ORCID logo EMAIL logo , Dai-Fang Wang , Xiao Cao , Qian-Wen Wang and Li-Gong Shen
Published/Copyright: December 5, 2023

Abstract

C12H12N2O8Co, orthorhombic, Pbca (no. 61), a = 11.4542(10) Å, b = 9.2421(8) Å, c = 25.501(2) Å, V = 2699.6(4) Å3, Z = 2, Rgt (F) = 0.0342, wRref (F2) = 0.0888, T = 296 K.

CCDC no.: 2303512

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Pink block
Size: 0.18 × 0.15 × 0.13 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 1.32 mm−1
Diffractometer, scan mode: Bruker SMART APEX-II, φ and ω
θmax, completeness: 27.4°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 14,974, 3046, 0.046
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 2504
N(param)refined: 208
Programs: Bruker [1], Olex2 [2], SHELX [34]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Co1 0.13881 (2) 0.45219 (3) −1.14587 (2) 0.01895 (11)
O1 0.05773 (15) 0.65515 (17) −1.16366 (7) 0.0290 (4)
H1A 0.001261 0.648959 −1.185176 0.044*
H1B 0.105521 0.712869 −1.178226 0.044*
O2 0.04914 (15) 0.3718 (2) −1.20910 (7) 0.0350 (4)
H2A 0.080382 0.320590 −1.232990 0.053*
H2B −0.022318 0.347170 −1.209340 0.053*
O3 0.28414 (15) 0.48307 (19) −1.19616 (6) 0.0310 (4)
H3A 0.283613 0.419077 −1.220169 0.046*
H3B 0.276973 0.562867 −1.212499 0.046*
O4 0.01823 (13) 0.39798 (18) −1.08747 (6) 0.0255 (4)
O5 0.21540 (15) 0.25536 (18) −1.13058 (6) 0.0309 (4)
O6 0.26596 (15) 0.05578 (17) −1.08821 (6) 0.0269 (4)
O13 0.16708 (16) −0.2769 (2) −0.76547 (7) 0.0394 (5)
O14 0.34745 (15) −0.2028 (2) −0.78060 (7) 0.0402 (5)
N5 0.08435 (18) 0.1433 (2) −0.96246 (8) 0.0287 (5)
N6 0.14938 (17) 0.1265 (2) −1.00548 (7) 0.0269 (4)
C25 0.2406 (2) −0.2062 (3) −0.79095 (9) 0.0266 (5)
C26 0.1968 (2) −0.1133 (3) −0.83555 (9) 0.0273 (5)
C27 0.0827 (2) −0.0666 (3) −0.83832 (10) 0.0294 (5)
H27 0.030872 −0.092625 −0.811890 0.035*
C28 0.0433 (2) 0.0182 (3) −0.87955 (9) 0.0271 (5)
H28 −0.033866 0.049225 −0.880829 0.033*
C29 0.2728 (3) −0.0710 (4) −0.87434 (13) 0.0619 (11)
H29 0.350811 −0.098499 −0.872441 0.074*
C30 0.2350 (3) 0.0116 (5) −0.91602 (13) 0.0707 (13)
H30 0.286783 0.037718 −0.942453 0.085*
C31 0.1205 (2) 0.0552 (3) −0.91837 (9) 0.0295 (5)
C32 −0.0041 (2) 0.2400 (3) −0.96030 (9) 0.0314 (6)
H32 −0.047643 0.248762 −0.929688 0.038*
C33 −0.0299 (2) 0.3237 (3) −1.00194 (9) 0.0304 (5)
H33 −0.092634 0.387393 −0.999992 0.036*
C34 0.03726 (19) 0.3166 (2) −1.04898 (8) 0.0222 (5)
C35 0.12906 (18) 0.2065 (2) −1.04657 (8) 0.0210 (4)
C36 0.20972 (19) 0.1704 (2) −1.09222 (8) 0.0206 (4)

1 Source of material

The mixture of cobalt nitrate hexahydrate 29.1 mg (0.1 mmol), 1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid 26.1 mg (0.1 mmol), NaOH 4 mg (0.1 mmol) and ethyl alcohol (10 mL) were placed in the autoclave lined with PTFE and heated at 100 °C for 72 h, then cooled up to room temperature over 24 h. Pink needle shaped crystals were collected after cooling to room temperature.

2 Experimental details

Using Olex2 [2], the structure was solved with the ShelXT [3] structure solution program and refined with the ShelXL [4] refinement package.

3 Comment

In recent years, metal coordination polymers have provoked great interest for their promising applications such as laser sensor [5], photosensitive material [6], fluorescent probe [7] and so on. However, the diversity in the framework architectures of such coordination polymers counts on many factors, such as the metal atom species, the coordination geometry of metal centers, the coordination ability of organic ligands and the reaction conditions (pH, temperature, solvent and so on) [8], [9], [10], [11], so that the selection of ligands and metal ions is the key to constructing coordination polymers. The coordination polymers constructed by rigid N-donor and carboxyl groups mixed ligands were a widely effective adopted strategy in this field. For example, the incorporation of functional groups including pyridyl, imidazole and carboxyl group into the internal of coordination polymers could enhance the fluorescence sensing capability through various host–guest interactions, for synthesis of coordination polymers with appropriate luminous performance and are vital. Up to now, several complexes based on 1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyrida zine-3-carboxylic acid have been reported, which exhibited structural diversity and different properties [12, 13].

X-ray single crystal diffraction analysis reveals that the asymmetric unit of the title complex consists of one independent Co(II) ion, one deprotonated 1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid and three monodentate coordinated water molecules. As show in the Figure, each Co(II) ion is six-coordinated with three oxygen atoms from three monodentate coordinated water molecules and three oxygen atoms from two crystallographically dependent organic ligands. There exists a dihedral angle of 28° between the benzene and pyridazine rings. Among them, the carboxylato group adjacent to pyridazine ring adopt the bridging mode to coordinate the two neighboring Co(II) ions to form a one-dimensional chain [14, 15]. Meanwhile, the carboxylate oxygen of the benzene ring is not involved in coordination. After further modification of the ligand, an interesting 1D structure was formed, which is linked by intermolecular hydrogen bonding to form a 3D supermolecular structure.


Corresponding author: Wen-Jun Liu, Fujian Vocational College of Bioengineering, Fuzhou, 350007, P.R. China, E-mail:

Funding source: The work was supported by the Natural Science Foundation of Fujian Province

Award Identifier / Grant number: (2019J05131)

Funding source: Science and Technology Project of Fujian Education Department

Award Identifier / Grant number: (JAT220629)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was supported by the Natural Science Foundation of Fujian Province (2019J05131) and Science and Technology Project of Fujian Education Department (JAT220629).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Li, Y. A., Yang, S., Li, Q. Y., Ma, J. P., Zhang, S. J., Dong, Y. B. UiO-68-ol NMOF-based fluorescent sensor for selective detection of HClO and its application in bioimaging. Inorg. Chem. 2017, 56, 13241–13248; https://doi.org/10.1021/acs.inorgchem.7b02012.Search in Google Scholar PubMed

6. Cheng, W., Sheng, R., Wang, Y., Liu, Y. T., Tong, B. H., Chen, P., Wang, S. Preparation and electroluminescent application of iridium(III) complexes containing sulfur-containing phenylpyridazine ligands. Transition Met. Chem. 2021, 46, 81–89; https://doi.org/10.1007/s11243-020-00424-6.Search in Google Scholar

7. Gao, Y. H., Huang, P. P., Xu, H. T., Huang, P., Liu, B., Lu, J. F., Ge, H. G. Two novel Zn(II) coordination polymers constructed by the same dicarboxylate and different bis-imidazole as co-ligand: syntheses, crystal structures and properties. J. Mol. Struct. 2023, 36, 135106–135114; https://doi.org/10.1016/j.molstruc.2023.135106.Search in Google Scholar

8. Chang, H. N., Liu, L. W., Hao, Z. C., Cui, G. H. A 3D Ag(I) metal-organic framework for sensing luminescence and photocatalytic activities. J. Mol. Struct. 2018, 1155, 496–502; https://doi.org/10.1016/j.molstruc.2017.11.038.Search in Google Scholar

9. Onwudiwe, D. C., Hosten, E. C. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups. J. Mol. Struct. 2018, 1152, 409–421; https://doi.org/10.1016/j.molstruc.2017.09.076.Search in Google Scholar

10. Wang, J. L., Bai, Y., Pan, H., Zheng, G. S., Dang, D. B. Long-range magnetic ordering in a metal-organic framework based on octanuclear nickel(II) clusters. Dalton Trans. 2017, 46, 12771–12774; https://doi.org/10.1039/c7dt02889j.Search in Google Scholar PubMed

11. Wu, Z. F., Huang, X. Y. A series of Mg–Zn heterometallic coordination polymers: synthesis, characterization, and fluorescence sensing for Fe3+, CS2, and nitroaromatic compounds. Dalton Trans. 2017, 46, 12597–12604; https://doi.org/10.1039/c7dt02800h.Search in Google Scholar PubMed

12. Gao, J. H., Wang, J. X., Huang, P. P., Liu, J., Zheng, N., Shi, J., Xu, H. T., Yue, S. Y., Lu, J. F. A new pyrazine carboxyl derivative and its two d10 metal coordination polymers: syntheses, characterization, DFT and property. J. Mol. Struct. 2023, 1290, 135935–135946; https://doi.org/10.1016/j.molstruc.2023.135935.Search in Google Scholar

13. Gao, J. H., Huang, P. P., Liu, J., Zheng, N., Wang, D., Yue, S. Y., Liu, E. N., Liu, Q., Liu, B., Lu, J. F. Construction of three novel Co/Zn/Cd(II) coordination polymers based on the same ligands: different spatial structures, electrocatalysis and photoluminescence properties. Arab. J. Chem. 2023, 16, 105314–105330; https://doi.org/10.1016/j.arabjc.2023.105314.Search in Google Scholar

14. Zhao, J., Liu, M.-L., Guo, S.-B., Sun, M., Zheng, J.-L., Ma, S.-T., Lu, J.-F., Ge, H.-G. Two Cu(II) complexes constructed by pyridazine carboxyl derivatives: synthesis, crystal structure and property. Inorg. Nano-Met. Chem. 2021, 52, 753–759; https://doi.org/10.1080/24701556.2021.1952247.Search in Google Scholar

15. Gao, J.-H., Wang, J.-X., Huang, P.-P., Liu, J., Zheng, N., Shi, J., Xu, H.-T., Yue, S.-Y., Lu, J.-F. A new pyrazine carboxyl derivative and its two d10 metal coordination polymers: syntheses, characterization, DFT and property. J. Mol. Struct. 2023, 1290, 135935; https://doi.org/10.1016/j.molstruc.2023.135935.Search in Google Scholar

Received: 2023-10-25
Accepted: 2023-11-23
Published Online: 2023-12-05
Published in Print: 2024-02-26

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of poly[diaqua-(μ4-3,3′-di(1H-1,2,4-triazol-1-yl)-[1,1′-biphenyl]-4,4′-dicarboxylate-N:N′:O:O′)cadmium(II)], C18H14N6O6Cd
  4. Crystal structure of (8R,8′S,13S,13′R)-8,8′-bis(hydroxymethyl)-9,9′,10,10′-tetramethoxy-5,5′,6,6′,8,8′,13,13′-octahydro-[13,13′-bi[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinoline]-7,7′-diium chloride-methanol (1/2), C46H58N2O14Cl2
  5. The crystal structure of 8-methoxy-2,2-diphenyl-tosyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ig]quinoline, C29H25BN2O3S
  6. Crystal structure of aqua-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N″,N‴)copper(II) 5-carboxyisophthalate tetrahydrate, C25H50N4CuO11
  7. The crystal structure of 1-(naphthalen-2-ylsulfonyl)-2,2-diphenyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ij]quinoline, C31H23BN2O2S
  8. Crystal structure of iodido-(η6-benzene) (1-(pyridin-2-yl)-N-(p-fluoro-methanamine)-κ2N,Nʹ)ruthenium(II) hexaflourophosphate, (C18H15F7IN2RuP)
  9. The crystal structure of 1-(3-oxo-1-phenyl-3-(p-tolyl) propylidene)-1,3-dihydro-2H-inden-2-one, C25H20O2
  10. Crystal structure of tricyclohexyl[4-(4H-1,2,4-triazol-4-yl)-benzoato-κO]tin(IV), C27H39N3O2Sn
  11. Crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ4N,O,O,O)cadmium(II)]monohydrate, C12H15NO9Cd
  12. Crystal structure of ethyl 2-((4-(3,5-dimethylisoxazol-4-yl)-2,6-difluorophenyl)amino)benzoate, C20H18F2N2O3
  13. The crystal structure of 2-(hydroxymethyl)-2-(4H-1,2,4-triazol-4-yl)propane-1,3-diol, C6H11N3O3
  14. The crystal structure of 1,2-bis(2,4-dinitrophenyl) hydrazine, C12H8N6O8
  15. Crystal structure of 1-(2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)-1,2-dihydro-4H-benzo[d][1,3]oxazin-4-one, C19H14Cl2N2O3
  16. The crystal structure of 5-amino-5-oxo-4-(1-oxo-4-(2-oxopyrrolidin-1-yl)isoindolin-2-yl)pentanoic acid, C17H19N3O5
  17. Crystal structure of N2,N6-bis(2-(((Z)-5-bromo-2-hydroxybenzylidene)amino) phenyl)pyridine-2,6-dicarboxamide, C33H23Br2N5O4
  18. The crystal structure of (E)-2-methoxy-6-(((5-methyl-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C11H11N3O2S
  19. The crystal structure of 3-((tert-butyldiphenylsilyl)methyl)-5,5-diphenyl-6-(p-tolyl) tetrahydro-2H-pyran-2-one, C41H42O2Si
  20. Crystal structure of 9-fluoro-4-(6-methoxypyridin-3-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  21. The crystal structure of 2-bromo-5-(4-cyanophenoxy)benzyl 1-methyl-1,2,5,6-tetrahydropyridine-3-carboxylate, C21H19BrN2O3
  22. Crystal structure of 3,3′-(1,4-phenylenebis(methylene))bis(1-isopropyl-1H-imidazol-3-ium) bis(hexafluorophosphate(V)), C10H14F6N2P
  23. The crystal structure of 2,2-di(thiophen-3-yl)-1-tosyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ig]quinoline, C24H19BN2O2S3
  24. Crystal structure of 5-bromo-1-(2-iodobenzoyl)-1H-indole-3-carbaldehyde, C16H9BrINO2
  25. The crystal structure of monocarbonyl-2-carboxypyridinato-κ2N,O-triphenylphosphine-rhodium(I) acetonitrile solvate, C26H20.50N1.50O3PRh
  26. Crystal structure of dichlorido-tetrakis(1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1N)manganese(II), C60H68O4N12Cl10Mn
  27. Crystal structure of 3-(tert-butyldiphenylsilyl)-1-(2,6-dichlorophenyl)-2,2-diphenylpropan-1-ol, C37H36Cl2OSi
  28. Crystal structure of langite from Mine du Pradet (France)
  29. The crystal structure of 5′-(furan-2-yl)-3′-((4-methylphenyl)sulfonamido)-3′,4′,5′,6′-tetrahydro-[1,1′:3′,1″-terphenyl]-4′-carboxylic acid, C30H27NO5S
  30. Synthesis and crystal structure of bis{2-(((4-acetophenone)imino)methyl)-4-fluorophenolato-κ2N,O}zinc(II), C30H22F2N2O4Zn
  31. The crystal structure of poly[(tripyridine-κ3N,N′,N″) μ3-(pyridine-3,4-dicarboxylate-κ3N:O:O′) manganese(II)], C22H22N4O8Mn
  32. The crystal structure of (E)-4-chloro-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H15ClN2O2
  33. Synthesis and crystal structure of bis{2-(tert-butyl)-6-((E)-((4-((E)-1-(methoxyimino) ethyl)phenyl)imino)methyl)phenolato-κ2N,O}cobalt(II), C40H46CoN4O4
  34. Crystal structure of tetraaqua-[(1-(carboxymethyl)-1H-pyrazole-3-carboxylato-κ2N,O)cobalt(II)], C6H12CoN2O8
  35. (6R,7S)-2,3,13-trimethoxy-6,7-dimethyl-5,6,7,8-tetrahydrobenzo[3′,4′]cycloocta [1′,2′:4,5]benzo[1,2-d][1,3]dioxol-1-ol, C22H26O6
  36. Crystal structure of 2-((2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)amino)benzoic acid, C18H14Cl2N2O3
  37. Crystal structure of (5aS,6aS,8aR,9R,11aS, 11bS,13R,13aS)-1,1,8a,11a-tetramethyl-9-((S)-1-((S)-5-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-3-oxo-1,7,8,8a,9,10,11,11a,11b,12,13,13a-dodecahydro-3H,6H-cyclopenta[5,6]cyclopropa[1,8a]naphtho[2,1-c]oxepin-13-yl acetate, C32H44O6
  38. Crystal structure of catena-poly[triaqua-(μ2-1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-O,O′:O″)cobalt(II)], C12H12N2O8Co
  39. Crystal structure of 3-[(furan-2-ylmethyl)-amino]-2-(2,3,4,5-tetrafluoro-benzoyl)-acrylic acid ethyl ester, C17H13F4NO4
  40. Crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3-methoxybenzoate, C13H16O6
  41. Crystal structure of 4-bromo-2-(4-chlorophenyl)-1-methyl-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile, C13H7BrClF3N2
  42. The crystal structure of triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ3N,O,O)nickel(II) monohydrate, C12H15NO9Ni
  43. Crystal structure of dihydroxy(2,4,6-triisopro-pylphenyl)telluronium trifluoromethanesulfonate, C16H25F3O5STe
  44. The crystal structure of 1-(carboxymethyl)-1H-imidazole 3-oxide
  45. The crystal structure of 1,3,5-tris(dibromomethyl)benzene, C9H6Br6
  46. Crystal structure of (Z)-3-(4-methoxyphenyl)-4-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-N-phenylthiazol-2(3H)-imine, C25H21N5OS
  47. Crystal structure of (Z)-3-(3-(4-hydroxyphenyl)-2-(phenylimino)-2,3-dihydrothiazol-4-yl)-2H-chromen-2-one, C24H16N2O3S
Downloaded on 7.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0465/html
Scroll to top button