Home Physical Sciences The crystal structure of 3-((tert-butyldiphenylsilyl)methyl)-5,5-diphenyl-6-(p-tolyl) tetrahydro-2H-pyran-2-one, C41H42O2Si
Article Open Access

The crystal structure of 3-((tert-butyldiphenylsilyl)methyl)-5,5-diphenyl-6-(p-tolyl) tetrahydro-2H-pyran-2-one, C41H42O2Si

  • Xiao-Feng Zhai , Shi-Hong Lin , Zhao-Zhao Zhou and Haixin Ding ORCID logo EMAIL logo
Published/Copyright: November 14, 2023

Abstract

C41H42O2Si, monoclinic, P21/n (no. 14), a = 14.1100(17) Å, b = 15.8352(19) Å, c = 16.644(2) Å, β = 110.659(2)°, V = 3479.7(7) Å3, Z = 4, R gt (F) = 0.0540, wRref(F2) = 0.1633, T = 296.15 K.

CCDC no.: 2294924

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.11 × 0.09 × 0.08 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.10 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 27.5°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 20,285, 7826, 0.041
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 4126
N(param)refined: 401
Programs: CrysAlisPRO [1], SHELX [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.2305 (2) 0.79129 (18) 0.6468 (2) 0.0757 (8)
C2 0.1355 (2) 0.8290 (2) 0.6109 (3) 0.0926 (10)
C3 0.0771 (2) 0.8123 (2) 0.5280 (3) 0.0966 (11)
C4 0.1104 (2) 0.7584 (2) 0.4800 (2) 0.0877 (10)
C5 0.20424 (18) 0.72046 (18) 0.51630 (17) 0.0625 (7)
C6 0.26756 (17) 0.73516 (14) 0.60015 (15) 0.0516 (6)
C7 0.4735 (2) 0.84798 (16) 0.69275 (18) 0.0639 (7)
C8 0.5510 (2) 0.90615 (18) 0.7248 (2) 0.0849 (9)
C9 0.6477 (2) 0.8796 (2) 0.7696 (2) 0.0809 (9)
C10 0.6671 (2) 0.79548 (19) 0.78216 (16) 0.0670 (7)
C11 0.59012 (18) 0.73743 (16) 0.74954 (15) 0.0574 (6)
C12 0.49075 (17) 0.76140 (14) 0.70416 (13) 0.0459 (5)
C13 0.37934 (18) 0.59661 (16) 0.72688 (14) 0.0540 (6)
C14 0.3648 (3) 0.6401 (2) 0.80415 (19) 0.1071 (12)
C15 0.2857 (2) 0.54250 (19) 0.68279 (19) 0.0871 (9)
C16 0.4710 (2) 0.5385 (2) 0.7585 (2) 0.1033 (12)
C17 0.42895 (16) 0.62578 (13) 0.56386 (13) 0.0427 (5)
C18 0.44728 (16) 0.67878 (12) 0.49277 (13) 0.0402 (5)
C19 0.53969 (16) 0.73617 (13) 0.52612 (14) 0.0437 (5)
C20 0.56481 (17) 0.77645 (13) 0.45192 (14) 0.0453 (5)
C21 0.59238 (17) 0.70147 (14) 0.40413 (15) 0.0490 (6)
C22 0.44856 (17) 0.62209 (14) 0.41943 (14) 0.0454 (5)
C23 0.4244 (2) 0.81103 (18) 0.30731 (19) 0.0759 (8)
C24 0.3391 (3) 0.8579 (3) 0.2595 (3) 0.1081 (13)
C25 0.3014 (3) 0.9187 (3) 0.2984 (4) 0.1245 (18)
C26 0.3488 (3) 0.9342 (2) 0.3842 (3) 0.1098 (13)
C27 0.4328 (2) 0.88875 (17) 0.4312 (2) 0.0780 (9)
C28 0.72602 (19) 0.83424 (16) 0.56663 (19) 0.0641 (7)
C29 0.8091 (2) 0.88753 (19) 0.5922 (2) 0.0836 (9)
C30 0.8228 (3) 0.9451 (2) 0.5361 (3) 0.0892 (10)
C31 0.7538 (3) 0.94987 (18) 0.4538 (2) 0.0833 (9)
C32 0.6709 (2) 0.89605 (16) 0.42755 (18) 0.0674 (7)
C33 0.65555 (18) 0.83669 (14) 0.48379 (16) 0.0521 (6)
C34 0.69911 (19) 0.59100 (14) 0.50715 (15) 0.0525 (6)
C35 0.7903 (2) 0.55390 (17) 0.55124 (18) 0.0692 (7)
C36 0.8788 (2) 0.5830 (2) 0.5429 (2) 0.0856 (9)
C37 0.8704 (3) 0.6478 (2) 0.4855 (3) 0.0978 (11)
C38 0.7785 (2) 0.68453 (17) 0.4398 (2) 0.0787 (9)
C39 0.69113 (18) 0.65788 (14) 0.45156 (16) 0.0515 (6)
C40 0.9807 (3) 0.5460 (3) 0.5960 (3) 0.1437 (17)
C41 0.47173 (19) 0.82523 (15) 0.39422 (16) 0.0554 (6)
O1 0.39231 (12) 0.56306 (11) 0.39407 (10) 0.0614 (5)
O2 0.51154 (12) 0.63950 (10) 0.37661 (10) 0.0542 (4)
Si1 0.39207 (5) 0.68023 (4) 0.64919 (4) 0.04297 (18)

1 Source of materials

An improved synthesis was performed which was similar to the previous report [5], [6], [7]. To the solution of tert-butyldiphenylsilane carboxylic acid (3.41 g, 12.0 mmol) in anhydrous 1,4-dioxane (80 mL) was added 4-methylbenzaldehyde (1.44 g, 12.0 mmol), benzyl acrylate (1.30 g, 8.0 mmol), 1,1-diphenylethylene (2.16 g, 12.0 mmol), NaHCO3 (0.67 g, 8.0 mmol) and organic photo catalyst 4CzIPN (316 mg, 0.4 mmol) under argon atmosphere. After addition, the reaction mixture was irradiated under 440 nm Kessil light for 12 h. TLC detection showed the reaction was finished. After simple filtration by silicone gel, the solvent was removed in vacuo. The obtained residue was dissolved in dichloromethane (100 mL), washed with water (50 mL × 2), brine (50 mL × 2) and dried over anhydrous MgSO4. After filtration, the solvent was evaporated in vacuo. The obtained residue was purified by column chromatography to afford white solid of 3-((tert-butyldiphenylsilyl)methyl)-5,5-diphenyl-6-(p-tolyl)tetrahydro-2H-pyran-2-one (1.52 g, 32 %), which was further purified by recrystallization from hexane and ethyl acetate. Crystals were obtained by slow evaporation from the solution at 268–270 K.

2 Comment

3-((tert-Butyldiphenylsilyl)methyl)-5,5-diphenyl-6-(p-tolyl)tetrahydro-2H-pyran-2-one is a product formed by a novel four-component radical dual difunctionalization (RDD) of two different alkenes with silanecarboxylic acid and aldehyde [8], in which the lactone product is generated from esterification of benzyl 2-((tert-butyldiphenylsilyl) methyl)-5-hydroxy-4,4-diphenyl-5-(p-tolyl)pentanoate afterwards. The selective ordered assembly of four-component molecules might be achieved by the inherent nucleophilic/electrophilic reactivity of radicals and alkenes [8, 9]. In this paper, single electron oxidation and decarboxylation of tert-butyldiphenylsilanecarboxylic acid anion produced nucleophilic silane radical [10], [11], [12], which preferentially added to electro-deficient methyl acrylate. The next produced electrophilic alkyl radical with α-ester group would subsequently added to 1,1-diphenylethylene in high chemo-selectivity. Finally, a reductive radical polar crossover (RPC)-type reaction [13] or radical-radical coupling process [14] with 4-methylbenzaldehyde provided four-component RDD product before intramolecular esterification reaction for silica-containing lactone product. In the literature, the detailed crystal structure analysis of 3-((tert-butyldiphenylsilyl) methyl)-5,5-diphenyl-6-(p-tolyl)tetrahydro-2H-pyran-2-one was obtained by continuous adjustment of crystallization conditions, which revealed the specific structure of the four-component radical dual difunctionalization (RDD) of two different alkenes with silanecarboxylic acid and aldehyde for the first time. Moreover, this single crystal data also provided direct proof for the mechanism of the previously reported multi-component radical relay reaction from a structural perspective [5], [6], [7], [8], which is also a significant reaction for further understanding organosilicon chemistry. The title structure (see the Figure) is a six-membered cyclic ester compound with one (tert-butyldiphenylsilyl)methyl at C18, two phenyls at C20 and one 4-methylphenyl group at C21. The six-membered heterocycle adopts an approximate chair conformation with two vertical groups (p-methylphenyl and one of phenyl group). Summarily, the bond lengths and angles are in the expected ranges [15].


Corresponding author: Haixin Ding, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, People’s Republic of China, E-mail:

Funding source: Natural Science Foundation of Jiangxi Province

Award Identifier / Grant number: 20212BAB213027

Award Identifier / Grant number: 20232BAB205058

Funding source: Nanchang Normal University

Award Identifier / Grant number: NSBSJJ2020009

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This work was supported by Natural Science Foundation of Jiangxi Province (20212BAB213027, 20232BAB205058), and Nanchang Normal University (NSBSJJ2020009).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Oxford Diffraction Ltd. CrysAlisPRO: Abingdon, Oxfordshire, England, 2006.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8, https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 4.0; Crystal Impact: Bonn, Germany, 2015.Search in Google Scholar

5. Tan, G., Paulus, F., Petti, A., Wiethoff, M., Lauer, A., Daniliuc, C., Glorius, F. Metal-free photosensitized radical relay 1,4-carboimination across two distinct olefins. Chem. Sci. 2023, 14, 2447–2454; https://doi.org/10.1039/d2sc06497a.Search in Google Scholar PubMed PubMed Central

6. Liu, R., Chen, X., Yang, L. D-A-D-T-type four-component radical dual-difunctionalization and acylative azidation of two different alkenes. Chem. Commun. 2023, 59, 7986–7989; https://doi.org/10.1039/d3cc01463k.Search in Google Scholar PubMed

7. Wu, C., Liu, R., Ma, D., Luo, C., Yang, L. Four-component radical dual difunctionalization (RDD) of two different alkenes with aldehydes and tert-butyl hydroperoxide (TBHP): an easy access to β,δ-functionalized ketones. Org. Lett. 2019, 21, 6117–6121; https://doi.org/10.1021/acs.orglett.9b02264.Search in Google Scholar PubMed

8. Du, P., Li, H., Wang, Y., Cheng, J., Wang, X. Radical-polar crossover reactions: oxidative coupling of 1,3-dioxolanes with electron-deficient alkenes and vinylarenes based on a radical addition and Kornblu–DeLaMare rearrangement. Org. Lett. 2014, 16, 6350–6353; https://doi.org/10.1021/ol503128j.Search in Google Scholar PubMed

9. Fischer, H. The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. Chem. Rev. 2001, 101, 3581–3610; https://doi.org/10.1021/cr990124y.Search in Google Scholar PubMed

10. Xu, N., Li, B., Wang, C., Uchiyama, M. Sila- and germacarboxylic acids: precursors for the corresponding silyl and germyl radicals. Angew. Chem. Int. Ed. 2020, 59, 10639–10644; https://doi.org/10.1002/ange.202003070.Search in Google Scholar

11. Zhou, R., Goh, Y. Y., Liu, H., Tao, H., Li, L., Wu, J. Visible-light-mediated metal-free hydrosilylation of alkenes through selective hydrogen atom transfer for Si–H activation. Angew. Chem. Int. Ed. 2017, 56, 16621–16625; https://doi.org/10.1002/anie.201711250.Search in Google Scholar PubMed

12. Hou, J., Ee, A., Cao, H., Ong, H.-W., Xu, J.-H., Wu, J. Visible-light- mediated metal-free difunctionalization of alkenes with CO2 and silanes or C(sp3)-H alkanes. Angew. Chem. Int. Ed. 2018, 57, 17220–17224; https://doi.org/10.1002/anie.201811266.Search in Google Scholar PubMed

13. Pitzer, L., Schwarz, J. L., Glorius, F. Reductive radical-polar crossover: traditional electrophiles in modern radical reactions. Chem. Sci. 2019, 10, 8285–8291; https://doi.org/10.1039/c9sc03359a.Search in Google Scholar PubMed PubMed Central

14. Bao, Q., Li, M., Xia, Y., Wang, Y., Zhou, Z., Liang, Y. Visible-light-mediated decarboxylative radical addition bifunctionalization cascade for the production of 1,4-amino alcohols. Org. Lett. 2021, 23, 1107–1112; https://doi.org/10.1021/acs.orglett.1c00034.Search in Google Scholar PubMed

15. Ramella, V., He, Z., Daniliuc, C. G., Studer, A. Palladium-catalyzed dearomatizing difunctionalization of indoles and benzofurans. Eur. J. Org Chem. 2016, 2016, 2268–2273; https://doi.org/10.1002/ejoc.201600194.Search in Google Scholar

Received: 2023-10-06
Accepted: 2023-10-26
Published Online: 2023-11-14
Published in Print: 2024-02-26

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of poly[diaqua-(μ4-3,3′-di(1H-1,2,4-triazol-1-yl)-[1,1′-biphenyl]-4,4′-dicarboxylate-N:N′:O:O′)cadmium(II)], C18H14N6O6Cd
  4. Crystal structure of (8R,8′S,13S,13′R)-8,8′-bis(hydroxymethyl)-9,9′,10,10′-tetramethoxy-5,5′,6,6′,8,8′,13,13′-octahydro-[13,13′-bi[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinoline]-7,7′-diium chloride-methanol (1/2), C46H58N2O14Cl2
  5. The crystal structure of 8-methoxy-2,2-diphenyl-tosyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ig]quinoline, C29H25BN2O3S
  6. Crystal structure of aqua-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N″,N‴)copper(II) 5-carboxyisophthalate tetrahydrate, C25H50N4CuO11
  7. The crystal structure of 1-(naphthalen-2-ylsulfonyl)-2,2-diphenyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ij]quinoline, C31H23BN2O2S
  8. Crystal structure of iodido-(η6-benzene) (1-(pyridin-2-yl)-N-(p-fluoro-methanamine)-κ2N,Nʹ)ruthenium(II) hexaflourophosphate, (C18H15F7IN2RuP)
  9. The crystal structure of 1-(3-oxo-1-phenyl-3-(p-tolyl) propylidene)-1,3-dihydro-2H-inden-2-one, C25H20O2
  10. Crystal structure of tricyclohexyl[4-(4H-1,2,4-triazol-4-yl)-benzoato-κO]tin(IV), C27H39N3O2Sn
  11. Crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ4N,O,O,O)cadmium(II)]monohydrate, C12H15NO9Cd
  12. Crystal structure of ethyl 2-((4-(3,5-dimethylisoxazol-4-yl)-2,6-difluorophenyl)amino)benzoate, C20H18F2N2O3
  13. The crystal structure of 2-(hydroxymethyl)-2-(4H-1,2,4-triazol-4-yl)propane-1,3-diol, C6H11N3O3
  14. The crystal structure of 1,2-bis(2,4-dinitrophenyl) hydrazine, C12H8N6O8
  15. Crystal structure of 1-(2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)-1,2-dihydro-4H-benzo[d][1,3]oxazin-4-one, C19H14Cl2N2O3
  16. The crystal structure of 5-amino-5-oxo-4-(1-oxo-4-(2-oxopyrrolidin-1-yl)isoindolin-2-yl)pentanoic acid, C17H19N3O5
  17. Crystal structure of N2,N6-bis(2-(((Z)-5-bromo-2-hydroxybenzylidene)amino) phenyl)pyridine-2,6-dicarboxamide, C33H23Br2N5O4
  18. The crystal structure of (E)-2-methoxy-6-(((5-methyl-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C11H11N3O2S
  19. The crystal structure of 3-((tert-butyldiphenylsilyl)methyl)-5,5-diphenyl-6-(p-tolyl) tetrahydro-2H-pyran-2-one, C41H42O2Si
  20. Crystal structure of 9-fluoro-4-(6-methoxypyridin-3-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  21. The crystal structure of 2-bromo-5-(4-cyanophenoxy)benzyl 1-methyl-1,2,5,6-tetrahydropyridine-3-carboxylate, C21H19BrN2O3
  22. Crystal structure of 3,3′-(1,4-phenylenebis(methylene))bis(1-isopropyl-1H-imidazol-3-ium) bis(hexafluorophosphate(V)), C10H14F6N2P
  23. The crystal structure of 2,2-di(thiophen-3-yl)-1-tosyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ig]quinoline, C24H19BN2O2S3
  24. Crystal structure of 5-bromo-1-(2-iodobenzoyl)-1H-indole-3-carbaldehyde, C16H9BrINO2
  25. The crystal structure of monocarbonyl-2-carboxypyridinato-κ2N,O-triphenylphosphine-rhodium(I) acetonitrile solvate, C26H20.50N1.50O3PRh
  26. Crystal structure of dichlorido-tetrakis(1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1N)manganese(II), C60H68O4N12Cl10Mn
  27. Crystal structure of 3-(tert-butyldiphenylsilyl)-1-(2,6-dichlorophenyl)-2,2-diphenylpropan-1-ol, C37H36Cl2OSi
  28. Crystal structure of langite from Mine du Pradet (France)
  29. The crystal structure of 5′-(furan-2-yl)-3′-((4-methylphenyl)sulfonamido)-3′,4′,5′,6′-tetrahydro-[1,1′:3′,1″-terphenyl]-4′-carboxylic acid, C30H27NO5S
  30. Synthesis and crystal structure of bis{2-(((4-acetophenone)imino)methyl)-4-fluorophenolato-κ2N,O}zinc(II), C30H22F2N2O4Zn
  31. The crystal structure of poly[(tripyridine-κ3N,N′,N″) μ3-(pyridine-3,4-dicarboxylate-κ3N:O:O′) manganese(II)], C22H22N4O8Mn
  32. The crystal structure of (E)-4-chloro-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H15ClN2O2
  33. Synthesis and crystal structure of bis{2-(tert-butyl)-6-((E)-((4-((E)-1-(methoxyimino) ethyl)phenyl)imino)methyl)phenolato-κ2N,O}cobalt(II), C40H46CoN4O4
  34. Crystal structure of tetraaqua-[(1-(carboxymethyl)-1H-pyrazole-3-carboxylato-κ2N,O)cobalt(II)], C6H12CoN2O8
  35. (6R,7S)-2,3,13-trimethoxy-6,7-dimethyl-5,6,7,8-tetrahydrobenzo[3′,4′]cycloocta [1′,2′:4,5]benzo[1,2-d][1,3]dioxol-1-ol, C22H26O6
  36. Crystal structure of 2-((2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)amino)benzoic acid, C18H14Cl2N2O3
  37. Crystal structure of (5aS,6aS,8aR,9R,11aS, 11bS,13R,13aS)-1,1,8a,11a-tetramethyl-9-((S)-1-((S)-5-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-3-oxo-1,7,8,8a,9,10,11,11a,11b,12,13,13a-dodecahydro-3H,6H-cyclopenta[5,6]cyclopropa[1,8a]naphtho[2,1-c]oxepin-13-yl acetate, C32H44O6
  38. Crystal structure of catena-poly[triaqua-(μ2-1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-O,O′:O″)cobalt(II)], C12H12N2O8Co
  39. Crystal structure of 3-[(furan-2-ylmethyl)-amino]-2-(2,3,4,5-tetrafluoro-benzoyl)-acrylic acid ethyl ester, C17H13F4NO4
  40. Crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3-methoxybenzoate, C13H16O6
  41. Crystal structure of 4-bromo-2-(4-chlorophenyl)-1-methyl-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile, C13H7BrClF3N2
  42. The crystal structure of triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ3N,O,O)nickel(II) monohydrate, C12H15NO9Ni
  43. Crystal structure of dihydroxy(2,4,6-triisopro-pylphenyl)telluronium trifluoromethanesulfonate, C16H25F3O5STe
  44. The crystal structure of 1-(carboxymethyl)-1H-imidazole 3-oxide
  45. The crystal structure of 1,3,5-tris(dibromomethyl)benzene, C9H6Br6
  46. Crystal structure of (Z)-3-(4-methoxyphenyl)-4-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-N-phenylthiazol-2(3H)-imine, C25H21N5OS
  47. Crystal structure of (Z)-3-(3-(4-hydroxyphenyl)-2-(phenylimino)-2,3-dihydrothiazol-4-yl)-2H-chromen-2-one, C24H16N2O3S
Downloaded on 7.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0436/html
Scroll to top button