Home Crystal structure of dichlorido-tetrakis(1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1N)manganese(II), C60H68O4N12Cl10Mn
Article Open Access

Crystal structure of dichlorido-tetrakis(1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1N)manganese(II), C60H68O4N12Cl10Mn

  • Ze-Jing Fan , Hong-Ya Li and Biao Yan ORCID logo EMAIL logo
Published/Copyright: December 5, 2023

Abstract

C60H68O4N12Cl10Mn, triclinic, P 1 (no. 2), a = 8.9262(11) Å, b = 13.7013(18) Å, c = 15.330(2) Å, α = 91.414(2)°, β = 98.951(2)°, γ = 106.688(2)°, V = 1769.3(4) Å3, Z = 1, R gt (F) = 0.0443, wR ref (F2) = 0.1222, T = 296(2) K.

CCDC No.: 1060305

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Pink needle
Size: 0.35 × 0.27 × 0.16 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.62 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 28.4°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 10,534, 7756, 0.023
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 5739
N(param)refined: 402
Programs: Bruker [1], SHELX [2], [3], [4], Diamond [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Mn 0.500000 0.500000 0.000000 0.03029 (12)
Cl1 0.74024 (7) 0.47851 (5) 0.10640 (4) 0.04816 (17)
Cl2 0.39941 (9) 0.85111 (6) 0.47832 (5) 0.0691 (2)
Cl3 −0.17640 (12) 0.86298 (8) 0.53008 (7) 0.0950 (3)
Cl4 −0.12160 (9) −0.03241 (6) 0.24942 (6) 0.0697 (2)
Cl5 −0.66239 (8) 0.02985 (6) 0.31674 (5) 0.0654 (2)
N1 0.4520 (2) 0.59086 (16) 0.11160 (12) 0.0421 (5)
N2 0.3430 (2) 0.63165 (15) 0.21983 (12) 0.0370 (4)
N3 0.4992 (2) 0.68953 (19) 0.23896 (14) 0.0567 (6)
N4 0.3399 (2) 0.35657 (15) 0.04347 (13) 0.0404 (5)
N5 0.1333 (2) 0.26191 (14) 0.09368 (12) 0.0353 (4)
N6 0.2576 (2) 0.22805 (18) 0.13018 (16) 0.0565 (6)
O1 0.0546 (2) 0.46907 (13) 0.22728 (11) 0.0488 (4)
H1A −0.025303 0.482234 0.203204 0.073*
O2 −0.1437 (2) 0.31610 (13) 0.00783 (11) 0.0483 (4)
H2A −0.171496 0.354001 0.039883 0.072*
C1 0.3191 (3) 0.57584 (18) 0.14375 (14) 0.0386 (5)
H1 0.221443 0.532060 0.116847 0.046*
C2 0.5575 (3) 0.6611 (2) 0.17188 (17) 0.0549 (7)
H2 0.663701 0.687415 0.166468 0.066*
C3 0.2310 (3) 0.63892 (18) 0.27668 (13) 0.0356 (5)
C4 0.1290 (3) 0.53985 (17) 0.30288 (15) 0.0388 (5)
H4 0.044774 0.555014 0.329732 0.047*
C5 0.2179 (3) 0.4843 (2) 0.37108 (17) 0.0535 (7)
C6 0.3072 (5) 0.5602 (3) 0.4504 (2) 0.0875 (12)
H6A 0.346002 0.524212 0.497474 0.131*
H6B 0.236568 0.593642 0.470492 0.131*
H6C 0.394910 0.610243 0.432868 0.131*
C7 0.0910 (5) 0.3976 (3) 0.4027 (2) 0.0889 (11)
H7A 0.032477 0.350621 0.353247 0.133*
H7B 0.019826 0.425568 0.428805 0.133*
H7C 0.141239 0.362286 0.445936 0.133*
C8 0.3316 (4) 0.4390 (3) 0.3313 (2) 0.0777 (10)
H8A 0.422304 0.493051 0.321934 0.117*
H8B 0.278673 0.401944 0.275779 0.117*
H8C 0.365415 0.393569 0.371155 0.117*
C9 0.2349 (3) 0.73235 (18) 0.30434 (14) 0.0399 (5)
H9 0.310404 0.786452 0.286010 0.048*
C10 0.1304 (3) 0.75907 (17) 0.36181 (14) 0.0377 (5)
C11 0.1950 (3) 0.81740 (18) 0.44173 (15) 0.0443 (6)
C12 0.1021 (4) 0.8499 (2) 0.49383 (17) 0.0536 (7)
H12 0.147705 0.889827 0.546484 0.064*
C13 −0.0594 (4) 0.8214 (2) 0.46547 (18) 0.0549 (7)
C14 −0.1295 (3) 0.7634 (2) 0.38707 (18) 0.0522 (6)
H14 −0.238824 0.745256 0.368641 0.063*
C15 −0.0328 (3) 0.7329 (2) 0.33642 (16) 0.0465 (6)
H15 −0.079151 0.693518 0.283565 0.056*
C16 0.1857 (3) 0.33809 (17) 0.04256 (15) 0.0382 (5)
H16 0.122600 0.373076 0.010868 0.046*
C17 0.3766 (3) 0.2874 (2) 0.09781 (19) 0.0582 (7)
H17 0.479182 0.282224 0.111296 0.070*
C18 −0.0221 (2) 0.22234 (16) 0.11665 (14) 0.0334 (5)
C19 −0.1621 (3) 0.21944 (17) 0.04521 (14) 0.0366 (5)
H19 −0.256270 0.205691 0.073748 0.044*
C20 −0.1979 (3) 0.13581 (19) −0.03121 (16) 0.0457 (6)
C21 −0.2114 (4) 0.0322 (2) 0.0083 (2) 0.0796 (10)
H21A −0.289310 0.019673 0.046555 0.119*
H21B −0.110470 0.033142 0.041584 0.119*
H21C −0.242696 −0.021016 −0.038674 0.119*
C22 −0.3596 (4) 0.1328 (3) −0.0856 (2) 0.0756 (9)
H22A −0.388540 0.080191 −0.132923 0.113*
H22B −0.352414 0.197658 −0.109871 0.113*
H22C −0.438706 0.118846 −0.048048 0.113*
C23 −0.0740 (4) 0.1573 (3) −0.09279 (18) 0.0668 (8)
H23A 0.025435 0.153346 −0.061103 0.100*
H23B −0.060715 0.224489 −0.113218 0.100*
H23C −0.109114 0.107681 −0.142594 0.100*
C24 −0.0321 (3) 0.18729 (18) 0.19659 (15) 0.0401 (5)
H24 0.061218 0.186407 0.232829 0.048*
C25 −0.1832 (3) 0.14961 (18) 0.23122 (14) 0.0379 (5)
C26 −0.2368 (3) 0.04964 (19) 0.25606 (15) 0.0411 (5)
C27 −0.3814 (3) 0.01249 (19) 0.28457 (15) 0.0458 (6)
H27 −0.414770 −0.054332 0.300645 0.055*
C28 −0.4751 (3) 0.0768 (2) 0.28862 (15) 0.0442 (6)
C29 −0.4223 (3) 0.1778 (2) 0.26984 (16) 0.0496 (6)
H29 −0.483036 0.221722 0.276065 0.060*
C30 −0.2775 (3) 0.21255 (19) 0.24159 (16) 0.0465 (6)
H30 −0.241926 0.280615 0.229091 0.056*

1 Source of material

The (E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol (0.653 g, 0.2 mmol) was dissolved in methanol (10 mL). Then, manganese chloride tetrahydrate (0.198 g, 0.1 mmol) was added. Reaction was allowed to stir at room temperature for 2 h. Pink needle crystal of the title compound was obtained by slow evaporation from propanone.

2 Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms, with C–H = 0.96 Å (methyl), Uiso (H) = 1.5 Ueq(C), C–H = 0.98 Å (methine), Uiso(H) = 1.2 Ueq(C), C–H = 0.93 Å (aromatic and alkenyl), Uiso(H) = 1.2 Ueq(C), and O–H = 0.82 Å (hydroxyl), Uiso(H) = 1.5 Ueq(O).

3 Comment

Triazole fungicides have the advantages of high efficiency, broad spectrum, low toxicity to nontarget organisms, and low resistance. Triazole fungicides can be used to control fungal diseases, such as powdery mildews, rusts, and many leaf spot fungi on a variety of plants [6]. In recent years, they have been widely used in the food and environmental fields [7, 8]. Diniconazole (E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl) pent-1-en-3-ol is a chiral triazole fungicide with protective, therapeutic, and eradicative effects. Its mode of action is to inhibit the demethylation of steroids, which play an important role in the ergosterol biosynthesis of basidiomycetes and ascomycetes, it has strong bactericidal activity to ascomycotina, basidiomycotina, and deuteromycotina [9]. After application, diniconazole can be absorbed by various parts of the plant, and it has been widely used in cereals, fruit trees, vegetables, and so on [10]. The pharmacological and toxicological properties of many drugs are improved when they form metal complexes [11], [12], [13], [14]. In this paper, a new diniconazole Mn(II) complex is described.

The asymmetric unit of the title structure contains a half Mn(II) cation, one chlorine anion and two diniconazole molecules to construct a new mononuclear complex. The Mn(II) cation is six-coordinated by two chlorido ligands and four triazole ligands. The Mn–N length (Mn–N1 = 2.2559(18) Å, Mn–N4 = 2.2576(18) Å) and Mn–Cl length (Mn–Cl1 = 2.5775(6) Å), the N1–Mn–N4, N1–Mn–N4 i , N1–Mn–Cl1, N4–Mn–Cl1, N1–Mn–Cl1 i , and N4–Mn–Cl1 i bond angles of 89.30(7)°, 90.70(7)°, 87.99(5)°, 90.84(5)°, 92.01(5)°, and 89.16(5)°, respectively (symmetry code: (i) −x + 1, −y + 1, −z). Mn(II) cation is the center of symmetry of the title compound, so the bond angle of N1–Mn–N1 i , N4–Mn–N4 i , and Cl1–Mn–Cl1 i is 180°. These are in agreement with closely related Mn(II) complexes reported [15], [16], [17], [18]. The title compound through O1–H1A⋯Cl1 ii (dO1⋯Cl1 = 3.1505(17) Å, 163.2°, symmetry code: (ii) x − 1, y, z) and O2–H2A⋯Cl1 ii (dO2⋯Cl1 = 3.1552(18) Å, 168.8°) hydrogen bond forming a one-dimensional (1D) chain along the a-axis.


Corresponding author: Biao Yan, School of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi 719000, P.R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: (22163012)

Funding source: Key Laboratory Project Foundation of Shaanxi Provincial Education Department in China

Award Identifier / Grant number: (20JS158)

Funding source: Yulin University Graduate Innovation Fund Project

Award Identifier / Grant number: (2023YLYCX01)

  1. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: The work was supported by National Natural Science Foundation of China (22163012), Key Laboratory Project Foundation of Shaanxi Provincial Education Department in China (20JS158), Yulin University Graduate Innovation Fund Project (2023YLYCX01).

References

1. Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

5. Brandenburg, K. DIAMOND; Crystal Impact GbR: Bonn Germany, 2006.Search in Google Scholar

6. Cui, K., Wu, X., Zhang, Y., Cao, J., Wei, D., Xu, J., Dong, F., Liu, X., Zheng, Y. Cumulative risk assessment of dietary exposure to triazole fungicides from 13 daily-consumed foods in China. Environ. Pollut. 2021, 286, 117550; https://doi.org/10.1016/j.envpol.2021.117550.Search in Google Scholar PubMed

7. Zhang, Q., Gao, B., Tian, M., Shi, H., Hua, X., Wang, M. Enantioseparation and determination of triticonazole enantiomers in fruits, vegetables, and soil using efficient extraction and clean-up methods. J. Chromatogr. B 2016, 1009–1010, 130–137; https://doi.org/10.1016/j.jchromb.2015.12.018.Search in Google Scholar PubMed

8. Mai, B., Fan, J., Jiang, Y., He, R., Lai, Y., Zhang, W. Fast enantioselective determination of triadimefon in different matrices by supercritical fluid chromatography. J. Chromatogr. B 2019, 1126–1127, 121740; https://doi.org/10.1016/j.jchromb.2019.121740.Search in Google Scholar PubMed

9. Teng, C., Gu, Y., Wang, Y., Wang, Z., Zhao, H., Qi, P., Guo, C., Xu, H., Di, S., Wang, X. Enantioselective dissipation, residue, and risk assessment of diniconazole enantiomers in four kinds of fruits. J. Agric. Food Chem. 2021, 69, 15512–15520; https://doi.org/10.1021/acs.jafc.1c03852.Search in Google Scholar PubMed

10. Wang, Y., Zhu, W., Wang, D., Teng, M., Yan, J., Miao, J., Zhou, Z. 1H NMR-based metabolomics analysis of adult zebrafish (Danio rerio) after exposure to diniconazole as well as its bioaccumulation behavior. Chemosphere 2017, 168, 1571–1577; https://doi.org/10.1016/j.chemosphere.2016.11.157.Search in Google Scholar PubMed

11. Ren, G.-Y., Li, J., Zhou, J.-H., Yan, B., Ren, Y.-H., Sun, X.-H., Ma, H.-X. Enhanced antifungal activities of four Zn(II) complexes based on uniconazole. Appl. Organomet. Chem. 2018, 32, e4169; https://doi.org/10.1002/aoc.4169.Search in Google Scholar

12. Ren, G.-Y., Li, J., Wei, X.-Z., Zhou, J.-H., Yan, B., Guo, Z.-Q., Ren, Y.-H., Sun, X.-H., Ma, H.-X. The enhanced biological activities of three Zn(II) complexes based on different 1,2,4-triazole fungicides. Appl. Organomet. Chem. 2018, 32, e4474; https://doi.org/10.1002/aoc.4474.Search in Google Scholar

13. Jie, L., Teng, X., Yan, B., Yang, M., Song, J., Ma, H. Two Cu(II) complexes of triadimefon: crystal structure, antifungal activities and structure–activity relationship. New J. Chem. 2015, 39, 6997–7003; https://doi.org/10.1039/c5nj00679a.Search in Google Scholar

14. Jie, L., Teng, X., Yan, B., Guan, Y., Yang, M., Song, J., Ma, H. Synergistic actions between tebuconazole ligand and Cu(II) cation: reasons for the enhanced antifungal activity of four Cu(II) complexes based on the fungicide tebuconazole. New J. Chem. 2015, 39, 9550–9556; https://doi.org/10.1039/c5nj01845e.Search in Google Scholar

15. Lumme, P. O., Lindell, E., Mutikainen, I. Trans-hexakis (pyrazole) manganese (II) bisperchlorate (1) and trans-dichlorotetrakis (pyrazole) manganese(II) (2). Acta Crystallogr. 1988, C44, 967–970; https://doi.org/10.1107/s0108270188001131.Search in Google Scholar

16. Li, J., Yan, B., Li, H. Crystal structure of dichlorido-tetra((E)- (RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1N)zinc(II), C60H68O4N12Cl10Zn. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 1121–1123, https://doi.org/10.1515/ncrs-2022-0384.Search in Google Scholar

17. Song, X.-Y., Liu, C.-X., Liu, Q., Nie, X.-L., Wen, S.-H. Dichloridotetrakis(diniconazole)cobalt(II). Acta Crystallogr. 2011, E67, m1214; https://doi.org/10.1107/s1600536811031291.Search in Google Scholar

18. Tang, X., Speldrich, M., Tchougreeff, A. L., Dronskowski, R. Syntheses, crystal structures and magnetic properties of Cr(NCNH2)4Cl2 and Mn(NCNH2)4Cl2. Z. Naturforsch. B 2012, 67, 1205–1211; https://doi.org/10.5560/znb.2012-0234.Search in Google Scholar

Received: 2023-10-12
Accepted: 2023-11-23
Published Online: 2023-12-05
Published in Print: 2024-02-26

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of poly[diaqua-(μ4-3,3′-di(1H-1,2,4-triazol-1-yl)-[1,1′-biphenyl]-4,4′-dicarboxylate-N:N′:O:O′)cadmium(II)], C18H14N6O6Cd
  4. Crystal structure of (8R,8′S,13S,13′R)-8,8′-bis(hydroxymethyl)-9,9′,10,10′-tetramethoxy-5,5′,6,6′,8,8′,13,13′-octahydro-[13,13′-bi[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinoline]-7,7′-diium chloride-methanol (1/2), C46H58N2O14Cl2
  5. The crystal structure of 8-methoxy-2,2-diphenyl-tosyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ig]quinoline, C29H25BN2O3S
  6. Crystal structure of aqua-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N″,N‴)copper(II) 5-carboxyisophthalate tetrahydrate, C25H50N4CuO11
  7. The crystal structure of 1-(naphthalen-2-ylsulfonyl)-2,2-diphenyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ij]quinoline, C31H23BN2O2S
  8. Crystal structure of iodido-(η6-benzene) (1-(pyridin-2-yl)-N-(p-fluoro-methanamine)-κ2N,Nʹ)ruthenium(II) hexaflourophosphate, (C18H15F7IN2RuP)
  9. The crystal structure of 1-(3-oxo-1-phenyl-3-(p-tolyl) propylidene)-1,3-dihydro-2H-inden-2-one, C25H20O2
  10. Crystal structure of tricyclohexyl[4-(4H-1,2,4-triazol-4-yl)-benzoato-κO]tin(IV), C27H39N3O2Sn
  11. Crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ4N,O,O,O)cadmium(II)]monohydrate, C12H15NO9Cd
  12. Crystal structure of ethyl 2-((4-(3,5-dimethylisoxazol-4-yl)-2,6-difluorophenyl)amino)benzoate, C20H18F2N2O3
  13. The crystal structure of 2-(hydroxymethyl)-2-(4H-1,2,4-triazol-4-yl)propane-1,3-diol, C6H11N3O3
  14. The crystal structure of 1,2-bis(2,4-dinitrophenyl) hydrazine, C12H8N6O8
  15. Crystal structure of 1-(2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)-1,2-dihydro-4H-benzo[d][1,3]oxazin-4-one, C19H14Cl2N2O3
  16. The crystal structure of 5-amino-5-oxo-4-(1-oxo-4-(2-oxopyrrolidin-1-yl)isoindolin-2-yl)pentanoic acid, C17H19N3O5
  17. Crystal structure of N2,N6-bis(2-(((Z)-5-bromo-2-hydroxybenzylidene)amino) phenyl)pyridine-2,6-dicarboxamide, C33H23Br2N5O4
  18. The crystal structure of (E)-2-methoxy-6-(((5-methyl-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C11H11N3O2S
  19. The crystal structure of 3-((tert-butyldiphenylsilyl)methyl)-5,5-diphenyl-6-(p-tolyl) tetrahydro-2H-pyran-2-one, C41H42O2Si
  20. Crystal structure of 9-fluoro-4-(6-methoxypyridin-3-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  21. The crystal structure of 2-bromo-5-(4-cyanophenoxy)benzyl 1-methyl-1,2,5,6-tetrahydropyridine-3-carboxylate, C21H19BrN2O3
  22. Crystal structure of 3,3′-(1,4-phenylenebis(methylene))bis(1-isopropyl-1H-imidazol-3-ium) bis(hexafluorophosphate(V)), C10H14F6N2P
  23. The crystal structure of 2,2-di(thiophen-3-yl)-1-tosyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ig]quinoline, C24H19BN2O2S3
  24. Crystal structure of 5-bromo-1-(2-iodobenzoyl)-1H-indole-3-carbaldehyde, C16H9BrINO2
  25. The crystal structure of monocarbonyl-2-carboxypyridinato-κ2N,O-triphenylphosphine-rhodium(I) acetonitrile solvate, C26H20.50N1.50O3PRh
  26. Crystal structure of dichlorido-tetrakis(1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1N)manganese(II), C60H68O4N12Cl10Mn
  27. Crystal structure of 3-(tert-butyldiphenylsilyl)-1-(2,6-dichlorophenyl)-2,2-diphenylpropan-1-ol, C37H36Cl2OSi
  28. Crystal structure of langite from Mine du Pradet (France)
  29. The crystal structure of 5′-(furan-2-yl)-3′-((4-methylphenyl)sulfonamido)-3′,4′,5′,6′-tetrahydro-[1,1′:3′,1″-terphenyl]-4′-carboxylic acid, C30H27NO5S
  30. Synthesis and crystal structure of bis{2-(((4-acetophenone)imino)methyl)-4-fluorophenolato-κ2N,O}zinc(II), C30H22F2N2O4Zn
  31. The crystal structure of poly[(tripyridine-κ3N,N′,N″) μ3-(pyridine-3,4-dicarboxylate-κ3N:O:O′) manganese(II)], C22H22N4O8Mn
  32. The crystal structure of (E)-4-chloro-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H15ClN2O2
  33. Synthesis and crystal structure of bis{2-(tert-butyl)-6-((E)-((4-((E)-1-(methoxyimino) ethyl)phenyl)imino)methyl)phenolato-κ2N,O}cobalt(II), C40H46CoN4O4
  34. Crystal structure of tetraaqua-[(1-(carboxymethyl)-1H-pyrazole-3-carboxylato-κ2N,O)cobalt(II)], C6H12CoN2O8
  35. (6R,7S)-2,3,13-trimethoxy-6,7-dimethyl-5,6,7,8-tetrahydrobenzo[3′,4′]cycloocta [1′,2′:4,5]benzo[1,2-d][1,3]dioxol-1-ol, C22H26O6
  36. Crystal structure of 2-((2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)amino)benzoic acid, C18H14Cl2N2O3
  37. Crystal structure of (5aS,6aS,8aR,9R,11aS, 11bS,13R,13aS)-1,1,8a,11a-tetramethyl-9-((S)-1-((S)-5-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-3-oxo-1,7,8,8a,9,10,11,11a,11b,12,13,13a-dodecahydro-3H,6H-cyclopenta[5,6]cyclopropa[1,8a]naphtho[2,1-c]oxepin-13-yl acetate, C32H44O6
  38. Crystal structure of catena-poly[triaqua-(μ2-1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-O,O′:O″)cobalt(II)], C12H12N2O8Co
  39. Crystal structure of 3-[(furan-2-ylmethyl)-amino]-2-(2,3,4,5-tetrafluoro-benzoyl)-acrylic acid ethyl ester, C17H13F4NO4
  40. Crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3-methoxybenzoate, C13H16O6
  41. Crystal structure of 4-bromo-2-(4-chlorophenyl)-1-methyl-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile, C13H7BrClF3N2
  42. The crystal structure of triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ3N,O,O)nickel(II) monohydrate, C12H15NO9Ni
  43. Crystal structure of dihydroxy(2,4,6-triisopro-pylphenyl)telluronium trifluoromethanesulfonate, C16H25F3O5STe
  44. The crystal structure of 1-(carboxymethyl)-1H-imidazole 3-oxide
  45. The crystal structure of 1,3,5-tris(dibromomethyl)benzene, C9H6Br6
  46. Crystal structure of (Z)-3-(4-methoxyphenyl)-4-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-N-phenylthiazol-2(3H)-imine, C25H21N5OS
  47. Crystal structure of (Z)-3-(3-(4-hydroxyphenyl)-2-(phenylimino)-2,3-dihydrothiazol-4-yl)-2H-chromen-2-one, C24H16N2O3S
Downloaded on 1.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0449/html
Scroll to top button