Home The crystal structure of 1-(naphthalen-2-ylsulfonyl)-2,2-diphenyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ij]quinoline, C31H23BN2O2S
Article Open Access

The crystal structure of 1-(naphthalen-2-ylsulfonyl)-2,2-diphenyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ij]quinoline, C31H23BN2O2S

  • Jing Zhou ORCID logo and Siyi Ding ORCID logo EMAIL logo
Published/Copyright: November 8, 2023

Abstract

C31H23BN2O2S, monoclinic, P21/c (no. 14), a = 9.1784(5) Å, b = 9.1168(6) Å, c = 28.7021(16) Å, β = 93.439°, V = 2397.4(2) Å3, Z = 4, R gt (F) = 0.0489, wRref(F2) = 0.1191, T = 193 K.

CCDC no.: 2260773

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.20 × 0.15 × 0.14 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.17 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 27.5°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 21440, 5490, 0.068
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 4164
N(param)refined: 334
Programs: Bruker [1], SHELX [2, 4, 5], Olex2 [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
S1 0.14037 (5) 0.13243 (6) 0.59865 (2) 0.02638 (13)
O1 0.05028 (14) 0.20688 (18) 0.63007 (5) 0.0337 (4)
O2 0.09818 (17) −0.01271 (18) 0.58360 (5) 0.0395 (4)
N1 0.51691 (16) 0.14070 (19) 0.67531 (5) 0.0244 (3)
N2 0.30294 (16) 0.12797 (18) 0.62398 (5) 0.0226 (3)
C1 0.0481 (2) 0.2092 (2) 0.50989 (7) 0.0276 (4)
H1 −0.015693 0.127471 0.511308 0.033*
C2 0.2777 (2) 0.2025 (3) 0.76016 (7) 0.0328 (5)
H2 0.328480 0.292924 0.763964 0.039*
C3 0.2132 (2) 0.1410 (3) 0.79831 (7) 0.0379 (5)
H3 0.220778 0.189605 0.827627 0.046*
C4 0.1503 (2) 0.2404 (2) 0.54756 (6) 0.0255 (4)
C5 0.2312 (2) 0.4615 (2) 0.67749 (7) 0.0336 (5)
H5 0.152715 0.415369 0.691919 0.040*
C6 0.4187 (2) 0.0539 (2) 0.60469 (6) 0.0242 (4)
C7 0.2230 (2) 0.6310 (3) 0.42743 (7) 0.0368 (5)
H7 0.218085 0.692871 0.400749 0.044*
C8 0.26944 (19) 0.1346 (2) 0.71649 (6) 0.0238 (4)
C9 0.7899 (2) 0.0213 (2) 0.66307 (8) 0.0345 (5)
H9 0.884385 −0.017977 0.659449 0.041*
C10 0.5428 (2) 0.0641 (2) 0.63582 (6) 0.0231 (4)
C11 0.1388 (2) 0.0105 (3) 0.79383 (7) 0.0357 (5)
H11 0.096571 −0.032120 0.820051 0.043*
C12 0.1915 (2) 0.0032 (2) 0.71298 (7) 0.0277 (4)
H12 0.183157 −0.045977 0.683755 0.033*
C13 0.5667 (3) −0.0875 (3) 0.55520 (7) 0.0386 (5)
H13 0.574518 −0.141030 0.527057 0.046*
C14 0.2433 (2) 0.3573 (2) 0.54621 (7) 0.0281 (4)
H14 0.310911 0.376110 0.571892 0.034*
C15 0.3330 (3) 0.6794 (3) 0.64557 (8) 0.0454 (6)
H15 0.324628 0.779849 0.637052 0.055*
C16 0.0425 (2) 0.2980 (2) 0.47149 (7) 0.0285 (4)
H16 −0.026533 0.277851 0.446310 0.034*
C17 0.4692 (2) 0.4551 (3) 0.64933 (7) 0.0330 (5)
H17 0.557093 0.404236 0.644135 0.040*
C18 0.1370 (2) 0.4189 (2) 0.46849 (6) 0.0262 (4)
C19 0.3323 (2) 0.5732 (3) 0.50363 (8) 0.0366 (5)
H19 0.400862 0.594853 0.528795 0.044*
C20 0.6788 (2) 0.0018 (2) 0.62755 (7) 0.0293 (4)
C21 0.7619 (2) 0.0966 (3) 0.70268 (8) 0.0357 (5)
H21 0.837044 0.108782 0.726599 0.043*
C22 0.3544 (2) 0.3788 (2) 0.66854 (6) 0.0248 (4)
C23 0.3246 (2) 0.6615 (3) 0.46483(8) 0.0394 (5)
H23 0.388111 0.743390 0.463221 0.047*
C24 0.1257 (2) −0.0583 (3) 0.75075 (7) 0.0322 (5)
H24 0.072123 −0.147118 0.747035 0.039*
C25 0.6880 (2) −0.0753 (3) 0.58494 (8) 0.0380 (5)
H25 0.777706 −0.118144 0.577137 0.046*
C26 0.4295 (2) −0.0243 (2) 0.56409 (7) 0.0318 (5)
H26 0.347537 −0.035873 0.542569 0.038*
C27 0.2197 (3) 0.6093 (3) 0.66594 (8) 0.0409 (6)
H27 0.133732 0.662193 0.672080 0.049*
C28 0.6230 (2) 0.1561 (2) 0.70835 (7) 0.0322 (5)
H28 0.604966 0.208007 0.736124 0.039*
C29 0.4583 (3) 0.6025 (3) 0.63770 (8) 0.0419 (6)
H29 0.537451 0.650505 0.624251 0.050*
C30 0.2392 (2) 0.4504 (2) 0.50657 (7) 0.0273 (4)
C31 0.1320 (2) 0.5140 (3) 0.42912 (7) 0.0324 (5)
H31 0.063732 0.495375 0.403607 0.039*
B1 0.3518 (2) 0.2033 (3) 0.67372 (7) 0.0227 (4)

1 Source of materials

The title complex was synthesized from a mixture of quinolin-8-amine, naphthalene-2-sulfonyl chloride and potassium trifluoro(phenyl)--borane suspended in MeCN under air atmosphere at 130 °C for 24 h. Until the completion of this reaction, the resulting residue was adsorbed onto silica gel by rotary evaporation of a DCM solution, loaded directly onto a silica gel column, and purified by rotary evaporation by eluting first with EtOAc:PE 1:5 to get the target product as yellow solid. Crystals of this target product formed in a mixed system of n-hexane and dichloromethane (DCM as the good solvent and n-hexane as the poor solvent).

2 Experimental details

All the H atoms were placed geometrically.

3 Comment

At present, one of the research hotspots in the field of organic fluorescent materials is the synthesis of tetracoordinated organoboron complexes, especially the construction strategy of N,N-chelated B,B-diaryltetracoordinated boron compounds, due to the harsh synthetic conditions of these compounds, organic metal reagents that are highly sensitive to both water and air are required in the experimental process. A one-pot three-component synthetic strategy of N,N-chelated-B,B-diaryl tetra-coordinated boron complexes is reported. 8-aminoquinoline is used as the precursor of N,N-chelated ligands, and potassium phenyltrifluoroborates (PhBF3K), which are chemically stable and available in the market, is used as the source of diphenyl groups on the boron centers.

Single-crystal X-ray diffraction (SC-XRD) analysis revealed that the asymmetric unit of the title compound is comprised of one title molecule. As shown in figure, the central boron atom B1 adopts a typical tetrahedral coordination geometry to connect with two nitrogen atoms (N1, N2) from the quinoline unit and two carbon atoms (C8, C22) from two different benzene rings. The bond lengths and bond angles surrounded the central B atoms are in the range of 1.607(3)–1.623(3) Å and 94.83(14)°–117.99(16)°, respectively, which are comparable to some previously reported boron-containing compounds [5], [6], [7], [8]. Due to the tetrahedral geometry of central B atom, the dihedral angles among the two benzene rings connected to the B atom and the quinoline unit are 67.91°, 73.27° and 84.14°, respectively. On the other hand, because of the unique configuration of the sulfanilamide group, both of the quinoline unit and one of the benzene rings (C22) are nearly perpendicular to the naphthyl ring with the dihedral angles of 84.73° and 73.60°, respectively, which further results in the formation of the intramolecular C–H⋯π interactions between the naphthyl ring and the benzene ring. In addition, there are numerous intermolecular π⋯π and C–H⋯π interactions among the aromatic rings from neighboring molecules, which results in the formation of two-dimensional (2D) supramolecular layers. Meanwhile, these 2D layers are further assembled by the π⋯π stacking interactions between the naphthyl rings, C–H⋯π interactions between the quinoline unit and benzene ring, and C–H⋯O hydrogen bonding interactions between the sulfanilamide oxygen atoms and the naphthyl rings to generate the final three-dimensional (3D) supramolecular structure.


Corresponding author: Siyi Ding, Technological Institute of Materials & Energy Science (TIMES), Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, Shaanxi Province, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Natural Science Foundation of China (No. 22201169) and Xijing University Special Fund for Talent Research in Special Zone (XJ22T03).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT, Program for Data Extraction and Reduction; Bruker AXS, Inc: Madison, WI, 2001.Search in Google Scholar

2. Sheldrick, G. M. SADABS, Program for Empirical Adsorption Correction of Area Detector Data; University of Göttingen: Germany, 2003.Search in Google Scholar

3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

6. Rodrigues, A. I., Figueira, C. A., Gomes, C. S. B., Suresh, D., Ferreira, B., Di Paolo, R. E., Pereira, D. S., Dias, F. B., Calhorda, M. J., Morgado, J., Maçanita, A. L., Gomes, P. T. Boron complexes of aromatic 5-substituted iminopyrrolyl ligands: synthesis, structure, and luminescence properties. Dalton Trans. 2019, 48, 13337–13352; https://doi.org/10.1039/c9dt02718a.Search in Google Scholar PubMed

7. Nagata, Y., Chujo, Y. Main-chain-type N,N-chelate organoboron aminoquinolate polymers: synthesis, luminescence, and energy transfer behavior. Macromolecules 2008, 41, 3488–3492; https://doi.org/10.1021/ma702873a.Search in Google Scholar

8. Más-Montoya, M., Usea, L., Espinosa Ferao, A., Montenegro, M. F., Arellano, C. R., Tárraga, A., Rodríguez-López, J. N., Curiel, D. Single heteroatom fine-tuning of the emissive properties in organoboron complexes with 7-(azaheteroaryl)indole systems. J. Org. Chem. 2016, 81, 3296–3302; https://doi.org/10.1021/acs.joc.6b00265.Search in Google Scholar PubMed

Received: 2023-09-13
Accepted: 2023-10-25
Published Online: 2023-11-08
Published in Print: 2024-02-26

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of poly[diaqua-(μ4-3,3′-di(1H-1,2,4-triazol-1-yl)-[1,1′-biphenyl]-4,4′-dicarboxylate-N:N′:O:O′)cadmium(II)], C18H14N6O6Cd
  4. Crystal structure of (8R,8′S,13S,13′R)-8,8′-bis(hydroxymethyl)-9,9′,10,10′-tetramethoxy-5,5′,6,6′,8,8′,13,13′-octahydro-[13,13′-bi[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinoline]-7,7′-diium chloride-methanol (1/2), C46H58N2O14Cl2
  5. The crystal structure of 8-methoxy-2,2-diphenyl-tosyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ig]quinoline, C29H25BN2O3S
  6. Crystal structure of aqua-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N″,N‴)copper(II) 5-carboxyisophthalate tetrahydrate, C25H50N4CuO11
  7. The crystal structure of 1-(naphthalen-2-ylsulfonyl)-2,2-diphenyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ij]quinoline, C31H23BN2O2S
  8. Crystal structure of iodido-(η6-benzene) (1-(pyridin-2-yl)-N-(p-fluoro-methanamine)-κ2N,Nʹ)ruthenium(II) hexaflourophosphate, (C18H15F7IN2RuP)
  9. The crystal structure of 1-(3-oxo-1-phenyl-3-(p-tolyl) propylidene)-1,3-dihydro-2H-inden-2-one, C25H20O2
  10. Crystal structure of tricyclohexyl[4-(4H-1,2,4-triazol-4-yl)-benzoato-κO]tin(IV), C27H39N3O2Sn
  11. Crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ4N,O,O,O)cadmium(II)]monohydrate, C12H15NO9Cd
  12. Crystal structure of ethyl 2-((4-(3,5-dimethylisoxazol-4-yl)-2,6-difluorophenyl)amino)benzoate, C20H18F2N2O3
  13. The crystal structure of 2-(hydroxymethyl)-2-(4H-1,2,4-triazol-4-yl)propane-1,3-diol, C6H11N3O3
  14. The crystal structure of 1,2-bis(2,4-dinitrophenyl) hydrazine, C12H8N6O8
  15. Crystal structure of 1-(2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)-1,2-dihydro-4H-benzo[d][1,3]oxazin-4-one, C19H14Cl2N2O3
  16. The crystal structure of 5-amino-5-oxo-4-(1-oxo-4-(2-oxopyrrolidin-1-yl)isoindolin-2-yl)pentanoic acid, C17H19N3O5
  17. Crystal structure of N2,N6-bis(2-(((Z)-5-bromo-2-hydroxybenzylidene)amino) phenyl)pyridine-2,6-dicarboxamide, C33H23Br2N5O4
  18. The crystal structure of (E)-2-methoxy-6-(((5-methyl-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C11H11N3O2S
  19. The crystal structure of 3-((tert-butyldiphenylsilyl)methyl)-5,5-diphenyl-6-(p-tolyl) tetrahydro-2H-pyran-2-one, C41H42O2Si
  20. Crystal structure of 9-fluoro-4-(6-methoxypyridin-3-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine, C18H15FN4O
  21. The crystal structure of 2-bromo-5-(4-cyanophenoxy)benzyl 1-methyl-1,2,5,6-tetrahydropyridine-3-carboxylate, C21H19BrN2O3
  22. Crystal structure of 3,3′-(1,4-phenylenebis(methylene))bis(1-isopropyl-1H-imidazol-3-ium) bis(hexafluorophosphate(V)), C10H14F6N2P
  23. The crystal structure of 2,2-di(thiophen-3-yl)-1-tosyl-1,2-dihydro-2λ4,3λ4-[1,3,2]diazaborolo[4,5,1-ig]quinoline, C24H19BN2O2S3
  24. Crystal structure of 5-bromo-1-(2-iodobenzoyl)-1H-indole-3-carbaldehyde, C16H9BrINO2
  25. The crystal structure of monocarbonyl-2-carboxypyridinato-κ2N,O-triphenylphosphine-rhodium(I) acetonitrile solvate, C26H20.50N1.50O3PRh
  26. Crystal structure of dichlorido-tetrakis(1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1N)manganese(II), C60H68O4N12Cl10Mn
  27. Crystal structure of 3-(tert-butyldiphenylsilyl)-1-(2,6-dichlorophenyl)-2,2-diphenylpropan-1-ol, C37H36Cl2OSi
  28. Crystal structure of langite from Mine du Pradet (France)
  29. The crystal structure of 5′-(furan-2-yl)-3′-((4-methylphenyl)sulfonamido)-3′,4′,5′,6′-tetrahydro-[1,1′:3′,1″-terphenyl]-4′-carboxylic acid, C30H27NO5S
  30. Synthesis and crystal structure of bis{2-(((4-acetophenone)imino)methyl)-4-fluorophenolato-κ2N,O}zinc(II), C30H22F2N2O4Zn
  31. The crystal structure of poly[(tripyridine-κ3N,N′,N″) μ3-(pyridine-3,4-dicarboxylate-κ3N:O:O′) manganese(II)], C22H22N4O8Mn
  32. The crystal structure of (E)-4-chloro-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H15ClN2O2
  33. Synthesis and crystal structure of bis{2-(tert-butyl)-6-((E)-((4-((E)-1-(methoxyimino) ethyl)phenyl)imino)methyl)phenolato-κ2N,O}cobalt(II), C40H46CoN4O4
  34. Crystal structure of tetraaqua-[(1-(carboxymethyl)-1H-pyrazole-3-carboxylato-κ2N,O)cobalt(II)], C6H12CoN2O8
  35. (6R,7S)-2,3,13-trimethoxy-6,7-dimethyl-5,6,7,8-tetrahydrobenzo[3′,4′]cycloocta [1′,2′:4,5]benzo[1,2-d][1,3]dioxol-1-ol, C22H26O6
  36. Crystal structure of 2-((2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)amino)benzoic acid, C18H14Cl2N2O3
  37. Crystal structure of (5aS,6aS,8aR,9R,11aS, 11bS,13R,13aS)-1,1,8a,11a-tetramethyl-9-((S)-1-((S)-5-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-3-oxo-1,7,8,8a,9,10,11,11a,11b,12,13,13a-dodecahydro-3H,6H-cyclopenta[5,6]cyclopropa[1,8a]naphtho[2,1-c]oxepin-13-yl acetate, C32H44O6
  38. Crystal structure of catena-poly[triaqua-(μ2-1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-O,O′:O″)cobalt(II)], C12H12N2O8Co
  39. Crystal structure of 3-[(furan-2-ylmethyl)-amino]-2-(2,3,4,5-tetrafluoro-benzoyl)-acrylic acid ethyl ester, C17H13F4NO4
  40. Crystal structure of methyl 4-(2-ethoxy-2-oxoethoxy)-3-methoxybenzoate, C13H16O6
  41. Crystal structure of 4-bromo-2-(4-chlorophenyl)-1-methyl-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile, C13H7BrClF3N2
  42. The crystal structure of triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ3N,O,O)nickel(II) monohydrate, C12H15NO9Ni
  43. Crystal structure of dihydroxy(2,4,6-triisopro-pylphenyl)telluronium trifluoromethanesulfonate, C16H25F3O5STe
  44. The crystal structure of 1-(carboxymethyl)-1H-imidazole 3-oxide
  45. The crystal structure of 1,3,5-tris(dibromomethyl)benzene, C9H6Br6
  46. Crystal structure of (Z)-3-(4-methoxyphenyl)-4-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-N-phenylthiazol-2(3H)-imine, C25H21N5OS
  47. Crystal structure of (Z)-3-(3-(4-hydroxyphenyl)-2-(phenylimino)-2,3-dihydrothiazol-4-yl)-2H-chromen-2-one, C24H16N2O3S
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0406/html?lang=en
Scroll to top button