Home Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S
Article Open Access

Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S

  • Ruonan Wang ORCID logo , Tianyu Heng , Dezhi Yang , Li Zhang EMAIL logo and Yang Lu
Published/Copyright: February 25, 2021

Abstract

C14H18N4O4S, triclinic, P1 (no. 2), a = 9.027(1) Å, b = 10.658(1) Å, c = 16.358(1) Å, α = 90.083(6)°, β = 92.278(6)°, γ = 103.085(6)°, V = 1531.66(19) Å3, Z = 4, Rgt(F) = 0.0419, wRref(F2) = 0.1175, T = 110.9(3) K.

CCDC no.: 2061744

The asymmetric unit of the title crystal structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colorless block
Size:0.25 × 0.25 × 0.24 mm
Wavelength:Cu Kα radiation (1.54184 Å)
μ:2.13 mm−1
Diffractometer, scan mode:Xcalibur, ω
θmax, completeness:71.6°, 99%
N(hkl)measured, N(hkl)unique, Rint:10,393, 10,393, n/a
Criterion for Iobs, N(hkl)gt:Iobs > 2σ(Iobs), 8935
N(param)refined:560
Programs:CrysAlisPRO [1], Olex2 [2], SHELX [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
S10.70055 (5)0.76559 (4)−0.02130 (3)0.01230 (13)
O10.83651 (15)0.86711 (14)−0.02257 (8)0.0171 (3)
O20.69737 (16)0.66355 (13)0.03622 (8)0.0173 (3)
N10.32800 (19)0.87896 (15)0.00767 (9)0.0140 (3)
N20.36910 (19)0.66512 (16)0.00348 (10)0.0152 (3)
N30.56958 (19)0.84546 (16)−0.00126 (10)0.0150 (3)
N40.5857 (2)0.5395 (2)−0.35366 (11)0.0281 (4)
C10.1800 (2)0.8302 (2)0.01505 (11)0.0161 (4)
C20.1187 (2)0.6987 (2)0.01865 (12)0.0181 (4)
C30.2200 (2)0.62005 (19)0.01153 (12)0.0171 (4)
C40.4160 (2)0.79264 (18)0.00352 (10)0.0130 (4)
C50.6583 (2)0.69942 (18)−0.11967 (11)0.0129 (4)
C60.5817 (2)0.57095 (19)−0.12994 (12)0.0143 (4)
C70.5559 (2)0.5185 (2)−0.20808 (12)0.0175 (4)
C80.6052 (2)0.5938 (2)−0.27684 (12)0.0181 (4)
C90.6784 (2)0.7241 (2)−0.26533 (12)0.0189 (4)
C100.7052 (2)0.7767 (2)−0.18750 (12)0.0161 (4)
S20.80284 (5)0.73578 (4)0.46990 (3)0.01199 (13)
O30.66526 (16)0.63589 (14)0.46025 (8)0.0171 (3)
O40.80708 (16)0.83199 (13)0.53211 (8)0.0169 (3)
N51.13583 (19)0.83277 (16)0.50015 (10)0.0145 (3)
N61.17464 (19)0.61817 (16)0.50330 (10)0.0145 (3)
N70.93310 (19)0.65333 (16)0.49030 (10)0.0144 (3)
N80.9288 (2)0.9920 (2)0.15291 (11)0.0247 (4)
C111.2865 (2)0.87710 (19)0.50864 (12)0.0165 (4)
C121.3878 (2)0.7971 (2)0.51571 (12)0.0178 (4)
C131.3243 (2)0.6661 (2)0.51213 (12)0.0167 (4)
C141.0878 (2)0.70482 (18)0.49824 (11)0.0133 (4)
C150.8453 (2)0.81120 (18)0.37639 (11)0.0126 (4)
C160.9121 (2)0.94203 (19)0.37439 (11)0.0139 (4)
C170.9409 (2)1.00187 (19)0.29988 (12)0.0163 (4)
C180.9031 (2)0.9312 (2)0.22590 (12)0.0168 (4)
C190.8399 (2)0.7980 (2)0.22960 (12)0.0185 (4)
C200.8108 (2)0.73825 (19)0.30374 (12)0.0156 (4)
O50.3965 (2)0.80037 (16)0.18729 (10)0.0296 (4)
O60.3588 (2)0.94760 (17)0.32547 (10)0.0309 (4)
C210.4937 (3)0.9234 (3)0.20434 (15)0.0287 (5)
C220.5051 (3)0.9507 (3)0.29524 (15)0.0336 (6)
C230.2598 (3)0.8258 (3)0.30770 (14)0.0298 (5)
C240.2504 (3)0.7973 (3)0.21728 (14)0.0304 (5)
O70.92768 (18)0.28278 (16)0.18253 (9)0.0248 (3)
O80.8340 (2)0.43373 (16)0.30382 (10)0.0313 (4)
C251.0058 (3)0.4131 (2)0.19764 (14)0.0248 (5)
C260.9901 (3)0.4503 (2)0.28561 (15)0.0300 (5)
C270.7564 (3)0.3039 (2)0.28844 (14)0.0244 (5)
C280.7718 (3)0.2667 (3)0.20069 (14)0.0283 (5)
H160.937 (3)0.983 (2)0.4224 (14)0.009 (5)*
H20.015 (3)0.667 (3)0.0246 (15)0.023 (6)*
H131.383 (3)0.607 (3)0.5155 (15)0.019 (6)*
H60.551 (3)0.524 (3)−0.0862 (15)0.018 (6)*
H111.317 (3)0.966 (3)0.5105 (16)0.024 (7)*
H30.595 (3)0.926 (3)−0.0056 (17)0.030 (7)*
H10.124 (3)0.888 (3)0.0191 (15)0.023 (7)*
H200.772 (3)0.655 (3)0.3058 (14)0.018 (6)*
H190.815 (3)0.752 (3)0.1847 (16)0.018 (6)*
H27A0.800 (3)0.252 (3)0.3276 (16)0.024 (6)*
H7A0.903 (3)0.576 (3)0.4890 (15)0.020 (6)*
H121.491 (3)0.825 (3)0.5220 (15)0.021 (6)*
H100.749 (3)0.860 (3)−0.1793 (15)0.021 (6)*
H170.983 (3)1.092 (3)0.2954 (15)0.020 (6)*
H23A0.298 (3)0.762 (3)0.3333 (16)0.024 (7)*
H70.503 (3)0.428 (3)−0.2150 (15)0.019 (6)*
H8A0.912 (4)0.952 (3)0.109 (2)0.035 (8)*
H3A0.185 (3)0.529 (3)0.0152 (16)0.025 (7)*
H90.710 (4)0.777 (3)−0.3113 (18)0.035 (8)*
H25A1.111 (3)0.420 (3)0.1876 (15)0.023 (6)*
H23B0.158 (4)0.821 (3)0.3258 (18)0.035 (8)*
H4A0.616 (4)0.584 (3)−0.3955 (19)0.034 (8)*
H8B0.959 (3)1.071 (3)0.1516 (17)0.029 (7)*
H22A0.543 (3)0.879 (3)0.3200 (17)0.031 (7)*
H26A1.043 (4)0.400 (4)0.321 (2)0.042 (9)*
H25B0.962 (3)0.470 (3)0.1613 (17)0.027 (7)*
H28A0.722 (3)0.316 (3)0.1645 (17)0.029 (7)*
H27B0.654 (3)0.294 (3)0.3020 (16)0.027 (7)*
H21A0.460 (4)0.989 (3)0.1786 (18)0.037 (8)*
H26B1.037 (4)0.537 (3)0.2959 (18)0.036 (8)*
H21B0.599 (4)0.918 (3)0.1862 (18)0.036 (8)*
H24A0.206 (4)0.871 (4)0.191 (2)0.048 (9)*
H28B0.724 (4)0.181 (3)0.1904 (18)0.037 (8)*
H4B0.516 (4)0.470 (3)−0.3636 (17)0.032 (7)*
H24B0.185 (4)0.717 (4)0.206 (2)0.048 (9)*
H22B0.570 (4)1.034 (4)0.306 (2)0.046 (9)*

Source of material

4-Amino-N-(2-pyrimidinyl)benzenesulfonamide (30 mg, 0.12 mmol) was dissolved in a mixed solvent system of acetone and 1,4-dioxane in a ratio of 6:10 (16 ml) at room temperature. The solution was filtered, sealed, and left to stand. After two weeks, colorless and block crystals were collected through solvent evaporation.

Experimental details

Hydrogen atoms were fixed in geometrically constrained positions and treated as riding on the parent atoms with Uiso(H) = 1.2 Ueq(C) [4], [, 5].

Comment

4-Amino-N-(2-pyrimidinyl)benzenesulfonamide, also known as sulfadiazine, is commonly used in clinical practice as a sulfonamide anti-infective drug. It has an inhibitory effect on sensitive bacteria and microorganisms, such as plasmodium, actinomycetes, and toxoplasma gondii, and is particularly effective in treating epidemic meningitis. However, sulfadiazine powder has poor properties, such as small particle size, poor fluidity, and low bulk density [6], which affect its solubility and preparation processes, such as tableting. Changing crystallization mode is a way to improve the properties of the powder but is ineffective in controlling crystal habit and particle size. Thus, sulfadiazine polymorphism screening has attracted interest [7]. Sulfadiazine solvate formation is convenient for controlling particle size and crystal habit. Different desolvent conditions may cause different crystalline phases, which are beneficial to the improvement of sulfadiazine production properties [8], [9], [10], [11]. Preparing sulfadiazine through phase conversion mediation is expected to improve the poor properties. Currently, reports on sulfadiazine crystal forms are rare. The crystal data include active pharmaceutical ingredients, metal complexes, solvates and cocrystals [12], [, 13]. Solvates have been reported, namely: 4-methylpyridine solvate, N,N-dimethylacetamide solvate, N-alkylpyrrolidone solvate, tetrahydrofuran solvate, and 1,4-dioxane solvate, which mostly have nitrogen/oxygen-containing ring structures, so do cocrystal formers [8], [14], [15], [16], [17], [18], [19]. However, 1,4-dioxane solvate lacks single-crystal data. In this study, we finally acquired 1,4-dioxane solvate of sulfadiazine through two weeks of slow evaporation in a mixed solvent of acetone and 1,4-dioxane.

The crystal was measured and analyzed. It presented a twinning phenomenon. The ratio of major and minor components is 0.5841(9):0.4159(9). The results showed the 1,4-dioxane solvate of sulfadiazine crystallized in the triclinic space group P1 and consisted of four formula units per unit cell (Z = 4). Every asymmetry unit has sulfadiazine and 1,4-dioxane molecules in a ratio of 1:1, as presented in the Figure. Thus, the asymmetric unit contains two sulfadiazine and two 1,4-dioxane molecules, and sulfadiazine molecules have the same conformation. Sulfadiazine has the dihedral angle of 99°. The crystals maintain intermolecular interactions owing to hydrogen bonds and van der Waals forces. Six hydrogen bonds (N4⋯O3 (x, y, z − 1): 3.269(2) Å; N4⋯O3(−x + 1, −y + 1, −z): 3.070(2) Å; N3⋯N1 (−x + 1, −y + 2, −z): 2.876(2) Å; N7⋯N6 (−x + 2, −y + 1, −z + 1): 2.840(2) Å; N8⋯O1: 3.163(2) Å; N8⋯O7 (x, y + 1, z): 3.139(3) Å) exist between sulfadiazine molecules. All hydrogen bonds lengths are in the expected ranges. One hydrogen bond (N4sul⋯O3sul: 3.269(2) Å) of a dimeric motif D11(2) forms between an amino group and a sulfonyl group. The secondary amine group and pyrimidinyl group is linked to a symmetry related one (N3⋯N1: 2.876(2) Å; N7⋯N6: 2.840(2) Å; dimer ring motif R22(8)). No hydrogen bonds are present between sulfadiazine and 1,4-dioxane unlike other solvates, showing intermolecular hydrogen bond Nsul⋯O/Nsolvate between the amino group in sulfadiazine and oxygen/nitrogen atom in solvate molecules [8]. The title 1,4-dioxane solvate of sulfadiazine presents a net structure and is mainly held by hydrogen bonds N–H⋯O/N between sulfadiazine molecules. Every sulfadiazine molecule can interact with two neighboring sulfadiazine molecules. The 1,4-dioxane molecules are filled in channels between sulfadiazine molecules, which facilitates the desolvent process.


Corresponding author: Li Zhang, Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, E-mail:

Award Identifier / Grant number: 2016YFC1000900

Funding source: National Science and Technology Major Project of China

Award Identifier / Grant number: 2017ZX09101001003

Award Identifier / Grant number: 2018ZX09711001-001-013

Award Identifier / Grant number: 2018ZX09711001-010

Award Identifier / Grant number: 2018ZX09711001-003-022

Award Identifier / Grant number: 81703473

Award Identifier / Grant number: 2017-I2M-3-010

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Key R&D Program of China (Grant No. 2016YFC1000900), National Science and Technology Major Project of China (Grant Nos. 2017ZX09101001003, 2018ZX09711001-001-013, 2018ZX09711001-010, 2018ZX09711001-003-022), National Natural Science Foundation of China (NSFC) (Grant No. 81703473) and CAMS Innovation Fund for Medical Sciences (Grant No. 2017-I2M-3-010).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPRO (Version 1.171.37.35). Agilent Technologies: Santa Clara, CA, USA, 2017.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Yang, D. Z., Wang, R. N., Jin, G. M., Zhang, B. X., Zhang, L., Lu, Y., Du, G. H. Structural and computational insights into cocrystal interactions: a case on cocrystals of antipyrine and aminophenazone. Cryst. Growth Des. 2019, 19, 347–361; https://doi.org/10.1021/acs.cgd.9b00591.Search in Google Scholar

5. Yuan, Y., Li, D. X., Wang, C. G., Chen, S. D., Kong, M. M., Deng, Z. W., Sun, C. Q. C., Zhang, H. L. Structural features of sulfamethizole and its cocrystals: beauty within. Cryst. Growth Des. 2019, 19, 7185–7192; https://doi.org/10.1021/acs.cgd.9b01060.Search in Google Scholar

6. Pan, F. F., Wang, R. M., Englert, U. Competing protonation sites in sulfadiazine: answers from chemistry and electron density. CrystEngComm 2013, 15, 1164–1172; https://doi.org/10.1039/c2ce26633d.Search in Google Scholar

7. Zhao, S. L., Wang, L. Y., Wu, S. G. Progress in the research of pharmaceutical polymorph. Chem. Ind. Lond. 2018, 35, 12–21.Search in Google Scholar

8. Wu, S. G. Analysis and Control of Polymorphism Transformation Process of Drug. PhD Degree Thesis; Tianjin University, 2017.Search in Google Scholar

9. Tianjin University. The Invention Relates to a Sulfadiazine N-Methyl Pyrrolidone Solvent Compound Crystal and a Preparation Method Thereof. Patent CN201410629017.3.2017.05.17.Search in Google Scholar

10. Macaringue, E. G. J. The Solvent Effect on the Solubility of D-Mannitol and on the Polymorphic Transformation of Sulfadiazine N-Methyl Pyrrolidone (NMP) Solvate. Master Degree Thesis; Tianjin University, 2017.Search in Google Scholar

11. Shin, H. S., Ihn, G. S., Kim, H. S., Koo, C. H. The crystal and molecular structure of sulfadiazine. J. Kor. Chem. Soc. 1974, 18, 329–340.Search in Google Scholar

12. Batista, L. C., de Souza, F. S., de Assis, V. M., Seabra, S. H., Bortoluzzi, A. J., Rennó, M. N., Horn, A., DaMatta, R. A., Fernandes, C. Antiproliferative activity and conversion of tachyzoite to bradyzoite of Toxoplasma gondii promoted by new zinc complexes containing sulfadiazine. RSC Adv. 2015, 5, 100606–100617; https://doi.org/10.1039/c5ra17690e.Search in Google Scholar

13. Sun, J., Li, X., Bao, Y. Desolvation kinetics of sulfadiazine N-methylpyrrolidone solvate. CIESC J. 2016, 67, 2349–2354.Search in Google Scholar

14. Zhang, X., Wang, C., Zhou, L., Yang, W. C., Zhou, L. N., Bao, Y., Zhang, M. J., Hou, B. H., Xu, Z., Yin, Q. X. Effects of hydrogen bond acceptor ability of solvents on molecular self-assembly of sulfadiazine solvates. J. Pharm. Sci. 2018, 107, 2823–2828; https://doi.org/10.1016/j.xphs.2018.06.026.Search in Google Scholar

15. Vemathi, G., Selvameena, R. Crystal structure of 4-amino-N-pyrimidin-2-ylbenzenesulfonamide. Bulg. Chem. Commun. 2018, 50, 33–36.Search in Google Scholar

16. Buist, A. R., Dennany, L., Kennedy, A. R., Manzie, C., McPhie, K., Walker, B. Eight salt forms of sulfadiazine. Acta Crystallogr. 2014, C70, 900–907; https://doi.org/10.1107/s2053229614018725.Search in Google Scholar

17. Coropceanu, E., Bologa, O., Arsene, I., Vitiu, A., Bulhac, I., Gorinchioy, N., Bourosh, P. Synthesis and characterization of inner-sphere substitution products in azide-containing cobalt (III) dioximates. Russ. J. Coord. Chem. 2016, 42, 516–538; https://doi.org/10.1134/s1070328416070046.Search in Google Scholar

18. Boughougal, A., Cherchali, F. Z., Messai, A., Attik, N., Decoret, D., Hologne, M., Sanglar, C., Pilet, G., Tommasino, J. B., Luneau, D. A new model of metalloantibiotic: synthesis, structure and biological activity of a zinc (II) mononuclear complex carrying two enrofloxacin and sulfadiazine antibiotics. New J. Chem. 2018, 42, 15346–15353; https://doi.org/10.1039/c8nj01774c.Search in Google Scholar

19. Elacqua, E., Bucar, D.-K., Henry, R. F., Zhang, G. G. Z., MacGillivray, L. R. Supramolecular complexes of sulfadiazine and pyridines: reconfigurable exteriors and chameleon-like behavior of tautomers at the co-crystal salt boundary. Cryst. Growth Des. 2013, 13, 393–403; https://doi.org/10.1021/cg301745x.Search in Google Scholar

Received: 2021-01-18
Accepted: 2021-02-08
Published Online: 2021-02-25
Published in Print: 2021-05-26

© 2021 Ruonan Wang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidoethylidene)benzohydrazonato-κ5N,O,O′:N′,O′′)hexkis(pyridine-κ1N)trinickel(II) - pyridine (1/1), C63H57Cl2N13Ni3O6
  4. Crystal structure of [(μ2-succinato κ3O,O′:O′′)-bis-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II)] diperchlorate, dihydrate C36H82Cl2N8Ni2O15
  5. Crystal structure of catena-poly[aquabis(3-nitrobenzoato-κ2O:O′)-(μ2-pyrazine-N: N′)cadmium(II)], C18H14N4O9Cd
  6. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione, C14H15F2NO2
  7. The crystal structure of thioxanthen-9-one-10,10-dioxide, C13H8O3S – a second polymorph
  8. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  9. The crystal structure of diaquahydrogen 2,5-dimethylbenzenesulphonate, C8H14O5S
  10. The crystal structure of N-(4-(cyclohexylimino)pent-2-en-2-yl)cyclohexanamine, C17H30N2
  11. The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2
  12. Crystal structure of 2,4,7,9-tetranitro-10H-benzofuro[3,2-b]indole – dimethyl sulfoxide (1/1), C16H11N5O10S
  13. Crystal structure of 2,6-bis(2-(pyridin-3-yl)ethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, C24H18N4O4
  14. The crystal structure of 3,4-dichlorobenzoic acid chloride, C7H3Cl3O
  15. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-k2S:S)zinc(II), C26H18N6ZnS4
  16. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10
  17. Crystal structure of 9-methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one, C14H13NO
  18. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 3-nitrophthalate monohydrate, C12H19N9O7S2
  19. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate), C18H24F12N4P2
  20. The crystal structure of 5-hydroxy-6,8-dimethoxy-2-methyl-4H-benzo[g]chromen-4-one– rubrofusarin B, C16H14O5
  21. The crystal structure of bis(ethanol-kO)- bis(6-aminopicolinato-k2N,O)manganese(II), C16H22O6N4Mn
  22. The crystal structure of 3,3′-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8
  23. Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4
  24. The crystal structure of methyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate, C7H6F3NO2
  25. Crystal structure of (OC‐6‐13)‐aqua‐tris (3‐bromopyridine‐κ1N)‐bis(trifluoroacetato‐κ1O)cadmium(II) C19H14Br3CdF6N3O5
  26. Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5
  27. Crystal structure of methyl 4-acetoxy-3,5-dimethoxybenzoate, C12H14O6
  28. The crystal structure of 2-(1H-benzimidazol-2-yl)-3-bromo-5-chlorophenol, C13H8BrClN2O
  29. The crystal structure of bis(μ2-5-chloro-N-(2-methyl-1-oxidopropylidene)-2-oxidobenzohydrazonate-κ5N,O,O′:N′,O′′)pentakis(pyridine-κ1N)tricopper(II), C47H45Cl2N9Cu3O6
  30. Synthesis and crystal structure of catena-poly[aqua-bis(nitrato-κ2O:O′)- (μ2-((1 H-imidazol-1-yl)methyl)benzene-κ2 N,N′)-H2O-κ2O]cadmium(II), C14H16N6O7Cd
  31. The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (FeFe)C26H21Fe2O6PS2
  32. Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S
  33. Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O
  34. Crystal structure of 2,2′-[ethane-1,2-diylbis(azanylylidenemethylylidene)]bis(6-chlorophenol), C16H14Cl2N2O2
  35. The crystal structure of (Z)-3-((2-(2-(2-aminophenoxy)ethoxy)phenyl)amino)-1-phenylbut-2-en-1-one, C24H24N2O3
  36. The crystal structure of 10-(3,5-di(pyridin-4-yl)phenyl)-10H-phenoxazine dihydrate, C28H23N3O3
  37. Crystal structure of poly[dipoly[aqua-di(µ2-pyrazin-2-olato-κ2N:N′) zinc(II)], C8H8N4O3Zn
  38. Crystal structure of poly[tetra(μ2-cyanido-κ2N:O)-bis(N,N-dimethylformamide-κO)-manganese(II)-platinum(II)], C10H14MnN6O2Pt
  39. The crystal structure of aqua-chlorido-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dichlorophenolato-κ4N,N′,O,O′)manganese(III), C16H12Cl5MnN2O3
  40. Crystal structure of [di(µ2-cyanido)-dicyanido-bis(dimethyl sulfoxide-κO)- bis(2,2′-(ethane-1,2-diylbis(azanylylidenemethanylylidene))diphenolato-κ4,N,N′,O,O′)- dimanganese(III)-platinum(II)], C40H40Mn2N8O6PtS2
  41. The crystal structure of (azido)-κ1N-6,6′-((cyclohexane-1,2-diylbis(azanylylidene)) bis(methanylylidene))bis(3-bromophenolato-κ4N,N,O,O)-(methanol)-manganese(III)–methanol(1/1), C22H26Br2MnN5O4
  42. Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2
  43. Crystal structure of catena-poly[(1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N′′′)-bis(μ2-thiocyanato-κ2N:S)-bis(thiocyanato-κS)-nickel(II)palladium(II)], C14H24N8NiPdS4
  44. Crystal structure of 3-chloro-4-(4-ethylpiperazin-1-yl)aniline monohydrate, C12H20ClN3O
  45. Crystal structure of the 2D coordination polymer poly[diaqua-bis(μ2-3- methoxyisonicotinato-κ2N:O)cobalt(II)] — dimethylformamide (1/1), C20H30CoN4O10
  46. Crystal structure of 4-[(5-chloro-2-hydroxybenzylidene)amino]-3-propyl-1H-1,2,4-triazole-5(4H)-thione, C12H13ClN4OS
  47. Crystal structure of N-(5-(2-(benzyl(1-(4-methoxyphenyl)propan-2-yl)amino)-1-hydroxyethyl)-2-(benzyloxy)phenyl)formamide, C33H36N2O4
  48. Crystal structure of 3-(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C9H12O5
  49. The crystal structure of 1-((dimethylamino)(3-nitrophenyl)methyl)naphthalen-2-ol, C19H18N2O3
  50. Crystal structure of catena-poly[di(μ2-cyanido-κ2C:N)-dicyanido-tetrakis(dimethyl sulfoxide-κO)-manganese(II)-platinum(II)], C12H24MnN4O4PtS4
  51. Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S
  52. Crystal structure of bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-(2-methyl-imidazol)}di-chloridomercury(II), [Hg(C11H11N5)2Cl2], C22H22N10Cl2Hg
  53. Crystal structure of 2, 3-bis((4-methylbenzoyl)oxy) succinic acid–N, N-dimethylformamide (1/1), C23H25NO9
  54. Crystal structure of catena-poly[bis(4-(4-carboxyphenoxy)benzoato-κ1O)-μ2-(1,4-bis(1-imidazolyl)benzene-κ2N:N′)cobalt(II)], C40H28N4O10Co
  55. Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr
  56. Crystal structure of (R)-6-(benzo[b]thiophen-5-yl)-2-methyl-2,6-dihydrobenzo [5,6] silino[4,3,2-cd]indole, C23H17NSSi
  57. Crystal structure of catena-poly[bis(μ2-thiocyanato-κ2N:S)-(2-(5-methyl-1H-pyrazol-3-yl)pyridine-κ2N,N′)cadmium(II)]–dioxane (1/1), C15H17CdN5O2S2
  58. Crystal structure of poly[aqua-(μ2-1,4-bis(2′-carboxylatophenoxy)benzene-κ2O:O′)-(μ2-4,4′-bipyridione-κ2N:N′)cadmium(II)] monhydrate, C30H22CdN2O7⋅H2O
  59. Crystal structure of catena-poly[tetraaqua-(μ2-4,4′-bipyridine-k2N:N′)-bis(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-k4O,O′:O″,O′″)dicadmium(II)] dihydrate, C20H20NO7Cd
  60. Crystal structure of 1‐tert‐butyl‐3‐(2,6‐diisopropyl‐4‐phenoxyphenyl)‐2-methylisothiourea, C24H34N2OS
  61. Crystal structure of catena-poly[triaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ1O)cobalt(II)] — N,N′-dimethylformamide (1/1), C28H34N8O8Co
  62. Crystal structure of tetraaqua-bis(1,4-di(1H-imidazol-1-yl)benzene-κ1N)manganese(II) 2,3-dihydroxyterephthalate, C32H32MnN8O10
Downloaded on 10.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0032/html?srsltid=AfmBOoqJ-Z3jxK99EO2Qe7NX9FWcGZFWKwjDe4c0Wnh_NwoW_QI--8gj
Scroll to top button