Home Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2
Article Open Access

Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2

  • Luo Juan , Gu Jia , Wang Jie , Liu Li-Hui EMAIL logo and Peng Da-Yong ORCID logo EMAIL logo
Published/Copyright: February 15, 2021

Abstract

C20H18ClIN2, monoclinic, P21/n (no. 14), a = 9.5271(19) Å, b = 16.936(3) Å, c = 12.012(2) Å, β = 105.06(3)°, V = 1871.5(7) Å3, Z = 4, Rgt(F) = 0.0436, wRref(F2) = 0.1396, T = 296(2) K.

CCDC no.: 2059378

The molecular structure is shown in Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colorless block
Size:0.12 × 0.12 × 0.10 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.86 mm−1
Diffractometer, scan mode:Bruker APEX-II, ω
θmax, completeness:25.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:12,027, 3478, 0.024
Criterion for Iobs, N(hkl)gt:Iobs > 2σ(Iobs), 3124
N(param)refined:218
Programs:Bruker [1], SHELX [2], [, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.2010 (4)0.7274 (2)0.5189 (3)0.0342 (7)
C20.2434 (4)0.6690 (2)0.4492 (3)0.0422 (8)
H20.18530.65950.37530.051*
C30.3676 (4)0.6268 (2)0.4890 (3)0.0449 (9)
H30.39310.58770.44350.054*
C40.4564 (4)0.6426 (2)0.5983 (4)0.0459 (9)
C50.4217 (4)0.6981 (2)0.6692 (3)0.0403 (8)
H50.48380.70740.74170.048*
C60.2902 (4)0.7416 (2)0.6317 (3)0.0322 (7)
C70.2413 (4)0.7988 (2)0.7017 (3)0.0333 (7)
C80.1082 (4)0.8361 (2)0.6546 (3)0.0371 (8)
C90.0353 (4)0.8217 (2)0.5376 (3)0.0408 (8)
C10−0.1040 (5)0.8644 (3)0.4796 (4)0.0589 (12)
H10A−0.18210.82610.45880.071*
H10B−0.09300.88820.40890.071*
C11−0.1475 (5)0.9283 (3)0.5529 (4)0.0671 (14)
H11A−0.08850.97510.55340.081*
H11B−0.24860.94260.52090.081*
C12−0.1260 (5)0.8980 (3)0.6743 (4)0.0622 (12)
H12A−0.17720.84840.67320.075*
H12B−0.16500.93560.71940.075*
C130.0357 (4)0.8860 (3)0.7288 (3)0.0480 (9)
H13A0.08310.93710.74160.058*
H13B0.04860.86060.80320.058*
C140.3485 (4)0.8862 (2)0.8738 (3)0.0383 (8)
H14A0.42090.87860.94640.046*
H14B0.25870.90190.89130.046*
C150.3980 (4)0.9527 (2)0.8089 (3)0.0354 (7)
C160.4659 (4)0.9399 (2)0.7218 (3)0.0398 (8)
H160.47980.88840.69980.048*
C170.5135 (4)1.0022 (3)0.6669 (3)0.0459 (9)
H170.55880.99250.60840.055*
C180.4937 (4)1.0781 (2)0.6989 (4)0.0481 (9)
C190.4282 (5)1.0927 (3)0.7861 (4)0.0580 (11)
H190.41571.14430.80820.070*
C200.3808 (5)1.0301 (3)0.8408 (4)0.0516 (10)
H200.33671.04010.89990.062*
N10.0774 (3)0.7690 (2)0.4724 (2)0.0403 (7)
N20.3247 (3)0.81085 (18)0.8124 (2)0.0381 (7)
H2A0.36690.77010.84910.046*
Cl10.61939 (16)0.59038 (9)0.64411 (13)0.0837 (5)
I10.55785 (4)1.17295 (2)0.61211 (4)0.0826 (2)

Source of material

Zinc chloride (3.47 g, 25.4 mmol) was added to a mixture of 5-chloro-2-aminobenzonitrile (3.88 g, 25.4 mmol) and cyclohexanone (30.5 mL, 294.6 mmol). The reaction was kept at 120 °C for 16 h, then cooled to room temperature and the solvent was filtered. To the residue, 50 mL ether was added and the resulting solid was collected after filtration. To the solid, 50 mL of a 30% solution of NaOH in water was poured and kept under stirring overnight. The reaction mixture were extracted with DCM (3 × 50 mL), the organic layers were combined and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to produce the desired product as a yellowish solid with 89% yield. A part of the aforementioned product 7-chloro-1,2,3,4-tetrahydroacridin-9-amine (0.47 g, 2 mmol) was dissolved in dichloromethane (16 mL), 50% NaOH (10 mL), and tetrabutyl hydrogen sulfate tetrabutylammonium hydrogen sulfate (TBAHS, 1.6 mmol), and finally stirred at room temperature for 30 min. To this mixture was added 1-(bromomethyl)-4-iodobenzene (0.45 g, 2.2 mmol) and stirred at room temperature for 4 h. Liquid separation: the organic phase was washed with water, dried with anhydrous sodium sulfate, and silica gel column chromatography was used to obtain the target compound, yield 50%. 7‐27-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine. Light yellow powder, yield 50%. m.p. 118–121 °C; Anal. Calcd. for C20H18CIC, 53.53; H, 4.04; N, 6.24. Found: C, 53.40; H, 4.23; N, 6.47. MS (EI) m/z: 356.08 (M)+.

Experimental details

All H atoms were included in calculated positions and refined as riding atoms, with C–H = 0.93 Å with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for all other H atoms.

Comment

Alzheimer’s disease (Alzheimer’s disease, AD) is a central neurodegenerative disease that is common in the elderly and caused by a variety of factors [5]. The clinical symptoms of AD are mainly manifested as long-term memory loss, confusion, language disorders, low mood, irritability and aggressiveness, which seriously threaten the health and social development of humans around the world [6]. In recent years, with the increasingly serious global aging, the prevalence of AD has been increasing year by year. According to a report by the World Alzheimer Organization in 2015, it is estimated that there will be more than 130 million AD patients worldwide in 2050 [7]. Due to its complex etiology and multifactorial development, the disease cannot be cured. The current clinical treatment is mainly to relieve symptoms, but the effect of reducing or preventing disease progression is not significant [8], [9], [10]. Therefore, looking for more effective AD treatment drugs has great practical and social significance. Tacrine is the first reversible and non-selective inhibitor of acetylcholinesterase, which approved by the FDA in 1993 for the treatment of AD [11]. Clinical trials have proved that the drug can improve senile dementia, but its bioavailability and therapeutic index are low, and it has greater liver toxicity [12], which greatly limits its application and has been withdrawn from clinical use. However, tacrine still has some beneficial effects in the treatment of AD. Researcher try to develop derivatives of tacrine to reduce the toxicity of other treatment methods in AD [13].

There is one independent molecule in the asymmetric unit (shown in Figure). In the molecule of the title compound bond lengths are very similar to those given in the literature for 9-benzylamino-1-hydroxy-1,2,3,4-tetrahydroacridine hydrogen maleate [14]. In the title structure, the part of quinoline is approximately planar. The dihedral angles formed by the quinoline plane and the C15–C20 plane was 80°. The molecular conformation is characterized by the C7–N2–C14–C15, C7–C8–C13–C12, C8–C13–C12–C11, C13–C12–C11–C10, and C12–C11–C10–C9 torsion angles of –51.5(5)°, –160.6(4)°, –52.0(5)°, 66.8(5)°, and –43.2(5)°.


Corresponding author: Liu Li-Hui, Institute of Plant Protection, Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning530007, People’s Republic of China, E-mail: ; and Peng Da-Yong, College of Sciences, Jiangxi Agricultural University, Nanchang330045, People’s Republic of China, E-mail:

Funding source: National Key Research Program of China

Award Identifier / Grant number: 2017YFD0301604

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 21562022

Funding source: Natural Science Foundation of Education Department of Jiangxi Province

Award Identifier / Grant number: GJJ180204

Funding source: Natural Science Foundation of Jiangxi Province

Award Identifier / Grant number: 20181BAB203015

Award Identifier / Grant number: 20161BAB204189

Acknowledgements

X-ray data were collected at Instrumental Analysis Center Nanchang Hangkong University, Nanchang, 330063, People’s Republic of China.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research has been supported by The “13th Five-Year” National Key Research Program of China (2017YFD0301604), the National Natural Science Foundation of China (21562022), Natural Science Foundation of Education Department of Jiangxi Province (No. GJJ180204), the Natural Science Foundation of Jiangxi Province (Grant No. 20161BAB204189, 20181BAB203015).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT AND SADABS. Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 4.0; Crystal Impact: Bonn, Germany, 2015.Search in Google Scholar

5. Huang, Y. D., Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell 2012, 148, 1204–1222; https://doi.org/10.1016/j.cell.2012.02.040.Search in Google Scholar

6. Kodamullil, A. T., Zekri, F., Sood, M., Hengerer, B., Canard, L., McHale, D., Hofmann-Apitius, M. Trial watch: tracing investment in drug development for Alzheimer disease. Nat. Rev. Drug Discov. 2017, 16, 819; https://doi.org/10.1038/nrd.2017.169.Search in Google Scholar

7. Liu, Z. H., Zhang, B., Xia, S. H., Lei, F., Gou, S. H. ROS-responsive and multifunctional anti-Alzheimer prodrugs: tacrine-ibuprofen hybrids via a phenyl boronate linker. Eur. J. Med. Chem. 2021, 211; https://doi.org/10.1016/j.ejmech.2020.112997.Search in Google Scholar

8. Schmidt, R., Hofer, E., Bouwman, F. H., Buerger, K., Cordonnier, C., Fladby, T., Galimberti, D., Georges, J., Heneka, M. T., Hort, J., Laczó, J., Molinuevo, J. L., OBrienReliga, J. T. D., Scheltens, P., Schott, J. M., Sorbi, S. EFNS–ENS/EAN guideline on concomitant use of cholinesterase inhibitors and memantine in moderate to severe Alzheimer’s disease. Eur. J. Neurol. 2015, 22, 889–898; https://doi.org/10.1111/ene.12707.Search in Google Scholar

9. de los Ríos, C., Marco-Contelles, J. Tacrines for Alzheimer’s disease therapy. III. The PyridoTacrines. Eur. J. Med. Chem. 2019, 166, 381–389; https://doi.org/10.1016/j.ejmech.2019.02.005.Search in Google Scholar

10. Wu, X. Y., Cu, J., Wang, Y. X. Half-rational screening of mutant overproducing coronatine. Acta Agric. Univ. Jiangxiensis 2008, 30, 888–893.Search in Google Scholar

11. Ezoulin, M. J. M., Dong, C. Z., Liu, Z., Li, J., Chen, H. Z., Heymans, F., Leliévre, L., Ombetta, J. E., Massicot, F. Study of PMS777, a new type of acetylcholinesterase inhibitor, in human HepG2 cells. comparison with tacrine and galanthamine on oxidative stress and mitochondrial impairment. Toxicol. In Vitro 2006, 20, 824–831; https://doi.org/10.1016/j.tiv.2006.01.002.Search in Google Scholar

12. Lancet, T. Tacrine for Alzheimer’s disease. J. Am. Med. Assoc. 1995, 272, 1897–1898.Search in Google Scholar

13. Horak, M., Holubova, K., Nepovimova, E., Krusek, J., Kaniakova, M., Korabecny, J., Vyklicky, L., Kuca, K., Stuchlik, A., Ricny, J., Vales, K., Soukop, O. The pharmacology of tacrine at N-methyl-d-aspartate receptors. Prog. Neurophsychopharmacol. Biol. Psychiatry 2017, 75, 54–62; https://doi.org/10.1016/j.pnpbp.2017.01.003.Search in Google Scholar

14. Bandoli, G., Dolmella, A., Gatto, S., Nicolini, M. Solid-state structures and conformational studies of four 1,2,3,4-tetrahydroacridine Alzheimer’s disease therapeutics. J. Chem. Crystallogr. 1994, 24, 301–310; https://doi.org/10.1007/bf01670205.Search in Google Scholar

Received: 2021-01-14
Accepted: 2021-01-28
Published Online: 2021-02-15
Published in Print: 2021-05-26

© 2021 Luo Juan et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidoethylidene)benzohydrazonato-κ5N,O,O′:N′,O′′)hexkis(pyridine-κ1N)trinickel(II) - pyridine (1/1), C63H57Cl2N13Ni3O6
  4. Crystal structure of [(μ2-succinato κ3O,O′:O′′)-bis-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II)] diperchlorate, dihydrate C36H82Cl2N8Ni2O15
  5. Crystal structure of catena-poly[aquabis(3-nitrobenzoato-κ2O:O′)-(μ2-pyrazine-N: N′)cadmium(II)], C18H14N4O9Cd
  6. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione, C14H15F2NO2
  7. The crystal structure of thioxanthen-9-one-10,10-dioxide, C13H8O3S – a second polymorph
  8. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  9. The crystal structure of diaquahydrogen 2,5-dimethylbenzenesulphonate, C8H14O5S
  10. The crystal structure of N-(4-(cyclohexylimino)pent-2-en-2-yl)cyclohexanamine, C17H30N2
  11. The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2
  12. Crystal structure of 2,4,7,9-tetranitro-10H-benzofuro[3,2-b]indole – dimethyl sulfoxide (1/1), C16H11N5O10S
  13. Crystal structure of 2,6-bis(2-(pyridin-3-yl)ethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, C24H18N4O4
  14. The crystal structure of 3,4-dichlorobenzoic acid chloride, C7H3Cl3O
  15. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-k2S:S)zinc(II), C26H18N6ZnS4
  16. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10
  17. Crystal structure of 9-methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one, C14H13NO
  18. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 3-nitrophthalate monohydrate, C12H19N9O7S2
  19. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate), C18H24F12N4P2
  20. The crystal structure of 5-hydroxy-6,8-dimethoxy-2-methyl-4H-benzo[g]chromen-4-one– rubrofusarin B, C16H14O5
  21. The crystal structure of bis(ethanol-kO)- bis(6-aminopicolinato-k2N,O)manganese(II), C16H22O6N4Mn
  22. The crystal structure of 3,3′-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8
  23. Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4
  24. The crystal structure of methyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate, C7H6F3NO2
  25. Crystal structure of (OC‐6‐13)‐aqua‐tris (3‐bromopyridine‐κ1N)‐bis(trifluoroacetato‐κ1O)cadmium(II) C19H14Br3CdF6N3O5
  26. Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5
  27. Crystal structure of methyl 4-acetoxy-3,5-dimethoxybenzoate, C12H14O6
  28. The crystal structure of 2-(1H-benzimidazol-2-yl)-3-bromo-5-chlorophenol, C13H8BrClN2O
  29. The crystal structure of bis(μ2-5-chloro-N-(2-methyl-1-oxidopropylidene)-2-oxidobenzohydrazonate-κ5N,O,O′:N′,O′′)pentakis(pyridine-κ1N)tricopper(II), C47H45Cl2N9Cu3O6
  30. Synthesis and crystal structure of catena-poly[aqua-bis(nitrato-κ2O:O′)- (μ2-((1 H-imidazol-1-yl)methyl)benzene-κ2 N,N′)-H2O-κ2O]cadmium(II), C14H16N6O7Cd
  31. The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (FeFe)C26H21Fe2O6PS2
  32. Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S
  33. Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O
  34. Crystal structure of 2,2′-[ethane-1,2-diylbis(azanylylidenemethylylidene)]bis(6-chlorophenol), C16H14Cl2N2O2
  35. The crystal structure of (Z)-3-((2-(2-(2-aminophenoxy)ethoxy)phenyl)amino)-1-phenylbut-2-en-1-one, C24H24N2O3
  36. The crystal structure of 10-(3,5-di(pyridin-4-yl)phenyl)-10H-phenoxazine dihydrate, C28H23N3O3
  37. Crystal structure of poly[dipoly[aqua-di(µ2-pyrazin-2-olato-κ2N:N′) zinc(II)], C8H8N4O3Zn
  38. Crystal structure of poly[tetra(μ2-cyanido-κ2N:O)-bis(N,N-dimethylformamide-κO)-manganese(II)-platinum(II)], C10H14MnN6O2Pt
  39. The crystal structure of aqua-chlorido-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dichlorophenolato-κ4N,N′,O,O′)manganese(III), C16H12Cl5MnN2O3
  40. Crystal structure of [di(µ2-cyanido)-dicyanido-bis(dimethyl sulfoxide-κO)- bis(2,2′-(ethane-1,2-diylbis(azanylylidenemethanylylidene))diphenolato-κ4,N,N′,O,O′)- dimanganese(III)-platinum(II)], C40H40Mn2N8O6PtS2
  41. The crystal structure of (azido)-κ1N-6,6′-((cyclohexane-1,2-diylbis(azanylylidene)) bis(methanylylidene))bis(3-bromophenolato-κ4N,N,O,O)-(methanol)-manganese(III)–methanol(1/1), C22H26Br2MnN5O4
  42. Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2
  43. Crystal structure of catena-poly[(1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N′′′)-bis(μ2-thiocyanato-κ2N:S)-bis(thiocyanato-κS)-nickel(II)palladium(II)], C14H24N8NiPdS4
  44. Crystal structure of 3-chloro-4-(4-ethylpiperazin-1-yl)aniline monohydrate, C12H20ClN3O
  45. Crystal structure of the 2D coordination polymer poly[diaqua-bis(μ2-3- methoxyisonicotinato-κ2N:O)cobalt(II)] — dimethylformamide (1/1), C20H30CoN4O10
  46. Crystal structure of 4-[(5-chloro-2-hydroxybenzylidene)amino]-3-propyl-1H-1,2,4-triazole-5(4H)-thione, C12H13ClN4OS
  47. Crystal structure of N-(5-(2-(benzyl(1-(4-methoxyphenyl)propan-2-yl)amino)-1-hydroxyethyl)-2-(benzyloxy)phenyl)formamide, C33H36N2O4
  48. Crystal structure of 3-(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C9H12O5
  49. The crystal structure of 1-((dimethylamino)(3-nitrophenyl)methyl)naphthalen-2-ol, C19H18N2O3
  50. Crystal structure of catena-poly[di(μ2-cyanido-κ2C:N)-dicyanido-tetrakis(dimethyl sulfoxide-κO)-manganese(II)-platinum(II)], C12H24MnN4O4PtS4
  51. Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S
  52. Crystal structure of bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-(2-methyl-imidazol)}di-chloridomercury(II), [Hg(C11H11N5)2Cl2], C22H22N10Cl2Hg
  53. Crystal structure of 2, 3-bis((4-methylbenzoyl)oxy) succinic acid–N, N-dimethylformamide (1/1), C23H25NO9
  54. Crystal structure of catena-poly[bis(4-(4-carboxyphenoxy)benzoato-κ1O)-μ2-(1,4-bis(1-imidazolyl)benzene-κ2N:N′)cobalt(II)], C40H28N4O10Co
  55. Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr
  56. Crystal structure of (R)-6-(benzo[b]thiophen-5-yl)-2-methyl-2,6-dihydrobenzo [5,6] silino[4,3,2-cd]indole, C23H17NSSi
  57. Crystal structure of catena-poly[bis(μ2-thiocyanato-κ2N:S)-(2-(5-methyl-1H-pyrazol-3-yl)pyridine-κ2N,N′)cadmium(II)]–dioxane (1/1), C15H17CdN5O2S2
  58. Crystal structure of poly[aqua-(μ2-1,4-bis(2′-carboxylatophenoxy)benzene-κ2O:O′)-(μ2-4,4′-bipyridione-κ2N:N′)cadmium(II)] monhydrate, C30H22CdN2O7⋅H2O
  59. Crystal structure of catena-poly[tetraaqua-(μ2-4,4′-bipyridine-k2N:N′)-bis(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-k4O,O′:O″,O′″)dicadmium(II)] dihydrate, C20H20NO7Cd
  60. Crystal structure of 1‐tert‐butyl‐3‐(2,6‐diisopropyl‐4‐phenoxyphenyl)‐2-methylisothiourea, C24H34N2OS
  61. Crystal structure of catena-poly[triaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ1O)cobalt(II)] — N,N′-dimethylformamide (1/1), C28H34N8O8Co
  62. Crystal structure of tetraaqua-bis(1,4-di(1H-imidazol-1-yl)benzene-κ1N)manganese(II) 2,3-dihydroxyterephthalate, C32H32MnN8O10
Downloaded on 9.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0021/html?lang=en
Scroll to top button