Abstract
A cost-effective and facile synthesis method is developed for hybrid aerogels using recycled cellulose fiber concentration of 1–4 wt.% and methoxytrimethylsilane (MTMS). The developed hybrid aerogel was modified with surface hydroxyl groups to achieve superhydrophobic behavior with a contact angle as high as 163.4°. This excellent three-dimensional reticular structure with various cellulose concentrations provides a thermal conductivity of 0.039–0.041 W m−1 K−1. However, the thermal degradation of the hybrid aerogels exhibits a superior improvement with minimum weight loss. A comparatively good sound absorption coefficient of 0.392–0.504 was achieved with the inclusion of cellulose fiber concentration from 1 to 4 wt.% in comparison with silica aerogels (0.303–0.512). The experimental results also show an increase in compressive Young’s modulus of hybrid aerogels up to 96%, with an increase in cellulose concentration. This work delivers a facile approach to developing hybrid aerogels with an industrial application to replace polymer-based insulations.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Tisdell, C. Int. J. Soc. Econ. 2008, 35, 889–903. https://doi.org/10.1108/03068290810911444.Suche in Google Scholar
2. Nema, P., Nema, S., Roy, P. Renew. Sustain. Energy Rev. 2012, 16, 2329–2336. https://doi.org/10.1016/j.rser.2012.01.044.Suche in Google Scholar
3. Baetens, R., Jelle, B. P., Gustavsen, A. Energy Build. 2011, 43, 761–769. https://doi.org/10.1016/j.enbuild.2010.12.012.Suche in Google Scholar
4. Cuce, E., Cuce, P. M., Wood, C. J., Riffat, S. B. Renew. Sustain. Energy Rev. 2014, 34, 273–299. https://doi.org/10.1016/j.rser.2014.03.017.Suche in Google Scholar
5. Bronzaft, L., Hagler, L. Emerg. Environ. Technol. 2010, 2, 75–96. https://doi.org/10.1007/978-90-481-3352-9.Suche in Google Scholar
6. Chen, D. R., Chang, X. H., Jiao, X. L. Aerogels in the Environment Protection; Elsevier B.V., 2014. https://doi.org/10.1016/B978-0-444-63283-8.00022-3.Suche in Google Scholar
7. Seidman, M. D., Standring, R. T. Int. J. Environ. Res. Publ. Health 2010, 7, 3730–3738. https://doi.org/10.3390/ijerph7103730.Suche in Google Scholar PubMed PubMed Central
8. Tzivian, L., Winkler, A., Dlugaj, M., Schikowski, T., Vossoughi, M., Fuks, K., Weinmayr, G., Hoffmann, B. Int. J. Hyg Environ. Health 2015, 218, 1–11. https://doi.org/10.1016/j.ijheh.2014.08.002.Suche in Google Scholar PubMed
9. Cotana, F., Pisello, A. L., Moretti, E., Buratti, C. Build. Environ. 2014, 81, 92–102. https://doi.org/10.1016/j.buildenv.2014.06.014.Suche in Google Scholar
10. Szabó, L., Soria, A., Forsström, J., Keränen, J. T., Hytönen, E. Environ. Sci. Pol. 2009, 12, 257–269. https://doi.org/10.1016/j.envsci.2009.01.011.Suche in Google Scholar
11. Ikeda, Y., Park, E. Y., Okuda, N. Bioresour. Technol. 2006, 97, 1030–1035. https://doi.org/10.1016/j.biortech.2005.04.040.Suche in Google Scholar PubMed
12. Cai, J., Liu, S., Feng, J., Kimura, S., Wada, M., Kuga, S., Zhang, L. Angew. Chem. 2012, 124, 2118–2121. https://doi.org/10.1002/ange.201105730.Suche in Google Scholar
13. Du, A., Zhou, B., Zhang, Z., Shen, J. Materials 2013, 6, 941–968. https://doi.org/10.3390/ma6030941.Suche in Google Scholar PubMed PubMed Central
14. Hüsing, N., Schubert, U. Angew. Chem. Int. Ed. 1998, 37, 22–45. https://doi.org/10.1002/(sici)1521-3773(19980202)37:1.10.1002/1521-3773(19980202)37:1/2<22::AID-ANIE22>3.3.CO;2-9Suche in Google Scholar
15. Wagh, P. B., Begag, R., Pajonk, G. M., Rao, A. V., Haranath, D. Mater. Chem. Phys. 1999, 57, 214–218. https://doi.org/10.1016/S0254-0584(98)00217-X.Suche in Google Scholar
16. Nguyen, S. T., Feng, J., Ng, S. K., Wong, J. P. W., Tan, V. B. C., Duong, H. M. Colloids Surf. A Physicochem. Eng. Asp. 2014, 445, 128–134. https://doi.org/10.1016/j.colsurfa.2014.01.015.Suche in Google Scholar
17. Parale, V. G., Lee, K. Y., Park, H. H. J. Korean Ceram. Soc. 2017, 54, 184–199. https://doi.org/10.4191/kcers.2017.54.3.12.Suche in Google Scholar
18. Parale, V. G., Han, W., Jung, H. N. R., Lee, K. Y., Park, H. H. Solid State Sci. 2018, 75, 63–70. https://doi.org/10.1016/j.solidstatesciences.2017.10.016.Suche in Google Scholar
19. Asdrubali, F., Schiavoni, S., Horoshenkov, K. V. Build. Acoust. 2012, 19, 283–312. https://doi.org/10.1260/1351-010X.19.4.283.Suche in Google Scholar
20. Demilecamps, A., Beauger, C., Hildenbrand, C., Rigacci, A., Budtova, T. Carbohydr. Polym. 2015, 122, 293–300. https://doi.org/10.1016/j.carbpol.2015.01.022.Suche in Google Scholar
21. Demilecamps, A., Reichenauer, G., Rigacci, A., Budtova, T. Cellulose 2014, 21, 2625–2636. https://doi.org/10.1007/s10570-014-0314-3.Suche in Google Scholar
22. Litschauer, M., Neouze, M. A., Haimer, E., Henniges, U., Potthast, A., Rosenau, T., Liebner, F. Cellulose 2011, 18, 143–149. https://doi.org/10.1007/s10570-010-9459-x.Suche in Google Scholar
23. Wang, L., Sánchez-Soto, M. RSC Adv. 2015, 5, 31384–31391. https://doi.org/10.1039/c5ra02981c.Suche in Google Scholar
24. Nguyen, S. T., Feng, J., Le, N. T., Le, A. T. T., Hoang, N., Tan, V. B. C., Duong, H. M. Ind. Eng. Chem. Res. 2013, 52, 18386–18391. https://doi.org/10.1021/ie4032567.Suche in Google Scholar
25. Feng, J., Le, D., Nguyen, S. T., Nien, V. T. C., Jewell, D., Duong, H. M. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 298–305. https://doi.org/10.1016/j.colsurfa.2016.06.052.Suche in Google Scholar
26. Sai, H., Xing, L., Xiang, J., Cui, L., Jiao, J., Zhao, C., Li, Z., Li, F. J. Mater. Chem. A 2013, 1, 7963–7970. https://doi.org/10.1039/c3ta11198a.Suche in Google Scholar
27. Shi, J., Lu, L., Guo, W., Zhang, J., Cao, Y. Carbohydr. Polym. 2013, 98, 282–289. https://doi.org/10.1016/j.carbpol.2013.05.082.Suche in Google Scholar PubMed
28. Rao, A. V., Kalesh, R. R. Sci. Technol. Adv. Mater. 2003, 4, 509–515. https://doi.org/10.1016/j.stam.2003.12.010.Suche in Google Scholar
29. Parale, V. G., Jung, H. N. R., Han, W., Lee, K. Y., Mahadik, D. B., Cho, H. H., Park, H. H. J. Alloys Compd. 2017, 727, 871–878. https://doi.org/10.1016/j.jallcom.2017.08.189.Suche in Google Scholar
30. Mathis, N. High. Temp. High. Press. 2000, 32, 321–327. https://doi.org/10.1068/htwu289.Suche in Google Scholar
31. Cai, J., Zhang, L. Biomacromolecules 2006, 7, 183–189. https://doi.org/10.1021/bm0505585.Suche in Google Scholar PubMed
32. Zhang, W., Zhang, Y., Lu, C., Deng, Y. J. Mater. Chem. 2012, 22, 11642–11650. https://doi.org/10.1039/c2jm30688c.Suche in Google Scholar
33. Cai, J., Liu, S., Feng, J., Kimura, S., Wada, M., Kuga, S., Zhang, L. Angew. Chem. Int. Ed. 2012, 51, 2076–2079. https://doi.org/10.1002/anie.201105730.Suche in Google Scholar PubMed
34. Holik, H. Handbook of Paper and Board; Wiley-VCH Verlag GmbH & Co. 2006. https://doi.org/10.1002/3527608257.Suche in Google Scholar
35. Rao, A. V., Kulkarni, M. M., Amalnerkar, D. P., Seth, T. J. Non-Cryst. Solids 2003, 330, 187–195. https://doi.org/10.1016/j.jnoncrysol.2003.08.048.Suche in Google Scholar
36. Shafi, S., Rasheed, T., Naz, R., Majeed, S., Bilal, M. J. Sol. Gel Sci. Technol. 2021, 98, 478–486. https://doi.org/10.1007/s10971-021-05530-0.Suche in Google Scholar
37. Sequeira, S., Evtuguin, D. V., Portugal, I. Polym. Compos. 2009, 30, 1275–1282. https://doi.org/10.1002/pc.20691.Suche in Google Scholar
38. Jia, N., Li, S. M., Ma, M. G., Zhu, J. F., Sun, R. C. Bioresources 2011, 6, 1186–1195. https://doi.org/10.15376/biores.6.2.1186-1195.10.15376/biores.6.2.1186-1195Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial ICPCM 2021
- Original Papers
- Developing easy-to-use, cost-effective wound dressing material by coating commercial cotton bandages with nanomaterials
- Temperature and magnetic field controlled dielectric relaxation and magnetodielectric response in KBiFe1.9Co0.1O5 polycrystalline
- Influence of thermo-mechanical treatment in austenitic and ferritic field condition on microstructural and mechanical properties of reduced activation ferritic-martensitic steel
- Effect of nanoparticle on mechanical properties of activated tungsten gas welding of austenite stainless steel 316L and optimization of process parameters
- Flexural behavior of carbon/glass inter-ply hybrid FRP composites under elevated temperature environments
- Surfactant assisted single step electrodeposition of CuInSe2 thin films with rich indium selenide surface over layer
- Optimization of hot rolling parameters of CRNO steel with the aid of hot compression test and deformation map
- Reduced graphene oxide synthesis by dry planetary ball milling followed by arc plasma treatment of high pure graphite
- Influence of interphase characteristics on the elastic modulus of unidirectional glass-reinforced epoxy composites: a computational micromechanics study
- Investigation of dielectric, impedance, and magnetodielectric behavior in Bi5Ti3FeO15–Bi2Fe4O9 composites prepared by sol–gel modified method
- Effect of spheroidization annealing on low cycle fatigue (LCF) characteristics of cold forged steel components
- Growth of CuO nanoparticles using one step chemical bath deposition under microwave heating and their characterizations
- Phase formation and electrical properties study of PVDF thick films synthesized by solution casting method
- Generation of microchannels on PMMA using an in-house fabricated μ-ECDM system
- Temperature dependent constitutive plastic flow behaviour of titanium alloy Ti6Al4V
- Production and characterization of Al–Cu binary alloy produced by using novel continuous casting process
- Synthesis of Al–Sn alloys by direct chill casting under the effect of mechanical stirring: an experimental and simulation optimization study
- Evaluation of characteristics for microwave-assisted polymer coating of the steel substrate
- Synthesis and fabrication of acrylic acid treated rattan fiber epoxy composite
- Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption
- Effect of thermal annealing on structure and magnetic properties in a Ni–Cr multilayer
- Effect of heat input on corrosion behavior of automotive zinc-coated steel joint
- Development of Al–SiC–TiO2 hybrid composite using powder metallurgy route and the influence of TiO2 content variation on microstructure and mechanical properties
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial ICPCM 2021
- Original Papers
- Developing easy-to-use, cost-effective wound dressing material by coating commercial cotton bandages with nanomaterials
- Temperature and magnetic field controlled dielectric relaxation and magnetodielectric response in KBiFe1.9Co0.1O5 polycrystalline
- Influence of thermo-mechanical treatment in austenitic and ferritic field condition on microstructural and mechanical properties of reduced activation ferritic-martensitic steel
- Effect of nanoparticle on mechanical properties of activated tungsten gas welding of austenite stainless steel 316L and optimization of process parameters
- Flexural behavior of carbon/glass inter-ply hybrid FRP composites under elevated temperature environments
- Surfactant assisted single step electrodeposition of CuInSe2 thin films with rich indium selenide surface over layer
- Optimization of hot rolling parameters of CRNO steel with the aid of hot compression test and deformation map
- Reduced graphene oxide synthesis by dry planetary ball milling followed by arc plasma treatment of high pure graphite
- Influence of interphase characteristics on the elastic modulus of unidirectional glass-reinforced epoxy composites: a computational micromechanics study
- Investigation of dielectric, impedance, and magnetodielectric behavior in Bi5Ti3FeO15–Bi2Fe4O9 composites prepared by sol–gel modified method
- Effect of spheroidization annealing on low cycle fatigue (LCF) characteristics of cold forged steel components
- Growth of CuO nanoparticles using one step chemical bath deposition under microwave heating and their characterizations
- Phase formation and electrical properties study of PVDF thick films synthesized by solution casting method
- Generation of microchannels on PMMA using an in-house fabricated μ-ECDM system
- Temperature dependent constitutive plastic flow behaviour of titanium alloy Ti6Al4V
- Production and characterization of Al–Cu binary alloy produced by using novel continuous casting process
- Synthesis of Al–Sn alloys by direct chill casting under the effect of mechanical stirring: an experimental and simulation optimization study
- Evaluation of characteristics for microwave-assisted polymer coating of the steel substrate
- Synthesis and fabrication of acrylic acid treated rattan fiber epoxy composite
- Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption
- Effect of thermal annealing on structure and magnetic properties in a Ni–Cr multilayer
- Effect of heat input on corrosion behavior of automotive zinc-coated steel joint
- Development of Al–SiC–TiO2 hybrid composite using powder metallurgy route and the influence of TiO2 content variation on microstructure and mechanical properties
- News
- DGM – Deutsche Gesellschaft für Materialkunde