Home Effect of thermal annealing on structure and magnetic properties in a Ni–Cr multilayer
Article
Licensed
Unlicensed Requires Authentication

Effect of thermal annealing on structure and magnetic properties in a Ni–Cr multilayer

  • Mitali Swain EMAIL logo , Dillip K. Satapathy , Mukul Gupta and M. S. Ramachandra Rao
Published/Copyright: April 14, 2023
Become an author with De Gruyter Brill

Abstract

Evolution of structural and magnetic properties in a nickel/chromium (Ni/Cr) multilayer, as a function of different annealing temperatures was investigated. The Ni/Cr multilayer of nominal structure [Cr (50 Å)/Ni (50 Å)]×10/Cr (30 Å) was grown on a Si substrate by radio frequency ion beam sputtering at room temperature. X-ray diffraction, X-ray reflectometry, atomic force microscopy and crossectional scanning electron microscopy were employed for the complete structural characterization of the multilayer whereas superconducting quantum interference device vibration sample magnetometer was used for the bulk magnetisation study. The effect of in-situ and ex-situ annealing on overall structural property of the multilayer also reported in present work. From in-situ X-ray reflectometry (50–400 °C), 300 °C was detected as the optimum temperature for improved structural properties of the Ni/Cr multilayer. Initiation of alloying in the multilayer sample was noticed at 350 °C. The multilayer found to exhibit polycrystalline nature observed by X-ray diffraction. Total thickness of the multilayer system was confirmed by crossectional scanning electron microscopy and in well agreement with X-ray reflectivity results. The Ni/Cr sample found to exhibit soft ferromagnetic behaviour after annealing at 300 °C and 400 °C. However the net magnetic moment reduced upon annealing at higher temperature (400 °C).


Corresponding author: Mitali Swain, C.V. Raman Global University, Bhubaneswar 752054 India; and Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India, E-mail: ,

Current address: Mitali Swain, C.V. Raman Global University, Bhubaneswar 752054, India.


Acknowledgments

One of the authors acknowledges the help of Mr. Layanta Behera of UGC DAE CSR, Indore in preparing the samples. The author also acknowledges Dr. V. R. Reddy of UGC DAE CSR, Indore, for providing the XRR facility to optimize the thickness of the ML during preparation of the sample.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Galanakis, I. J. Magn. Magn Mater. 2015, 377, 291. https://doi.org/10.1016/j.jmmm.2014.10.030.Search in Google Scholar

2. Spaepen, F., Shull, A. L. Curr. Opin. Solid State Mater. Sci. 1996, 1, 679. https://doi.org/10.1016/S1359-0286(96)80051-9.Search in Google Scholar

3. Garoufalis, C., Galanakis, I. J. Magn. Magn Mater. 2016, 401, 138. https://doi.org/10.1016/j.jmmm.2015.10.037.Search in Google Scholar

4. Nayak, M., Lodha, G. S., Nandedkar, R. V. Bull. Mater. Sci. 2006, 29, 693.Search in Google Scholar

5. Berkowitz, A. E., Takano, K. J. Magn. Magn Mater. 1999, 200, 552. https://doi.org/10.1016/S0304-8853(99)00453-9.Search in Google Scholar

6. Shinjo, T., Ko, M. Hyperfine Interact. 2002, 144/145, 53. https://doi.org/10.1007/978-94-010-0045-1-5.Search in Google Scholar

7. Zabel, H., Theis-Bröhl, K. J. Phys.: Condens. Matter. 2003, 15, S505. https://doi.org/10.1088/0953-8984/15/5/306.Search in Google Scholar

8. Brillson, L. J. J. Phys. Chem. Solid. 1983, 44, 703. https://doi.org/10.1016/0022-3697(83)90002-1.Search in Google Scholar

9. Zhang, S. L., Östling, M. Crit. Rev. Solid State Mater. Sci. 2003, 28, 1.10.1080/10408430390802431Search in Google Scholar

10. Kwon, Y., Kim, N.-H., Choi, G.-P., Lee, W.-S., Seo, Y.-J., Park, J. Microelectron. Eng. 2005, 82, 314.10.1016/j.mee.2005.07.040Search in Google Scholar

11. Petley, V., Sathishkumar, S., Raman, K. H. T., Rao, G. M., Chandrasekhar, U. Mater. Res. Bull. 2015, 66, 59. https://doi.org/10.1016/j.materresbull.2015.02.002.Search in Google Scholar

12. Nenadović, T. M., Fotirić, Z. B., Dimitrijević, T. S., Adamov, M. B. Thin Solid Films 1972, 10, 45. https://doi.org/10.1016/0040-6090(72)90270-2.Search in Google Scholar

13. Gehman, B. L., Jonsson, S., Rudolph, T., Scherer, M., Weigert, M., Werner, R. Thin Solid Films 1992, 220, 333. https://doi.org/10.1016/0040-6090(92)90594-2.Search in Google Scholar

14. ÖZtas, M., Bedir, M., Kayah, R., Aksoy, F. J. Mater. Sci. Mater. Electron. 2006, 17, 841. https://doi.org/10.1007/s10854-006-0032-1.Search in Google Scholar

15. Hecker, M., Tietjen, D., Wendrock, H., Schneider, C. M., Cramer, N., Malkinski, L., Camley, R. E., Celinski, Z. J. Magn. Magn Mater. 2002, 247, 62. https://doi.org/10.1016/S0304-8853(02)00147-6.Search in Google Scholar

16. Haque, M. A., Mahalakshmi, S. J. Adv. Phys. 2014, 3, 159. https://doi.org/10.1166/jap.2014.1116.Search in Google Scholar

17. Bhatt, P., Ganeshan, V., Reddy, V. R., Chaudhari, S. M. Appl. Surf. Sci. 2006, 253, 2572. https://doi.org/10.1016/j.apsusc.2006.05.036.Search in Google Scholar

18. Schmidt, H., Gupta, M., Gutberlet, T., Stahn, J., Bruns, M. Acta Mater. 2008, 56, 464. https://doi.org/10.1016/j.actamat.2007.10.005.Search in Google Scholar

19. Chakravarty, S., Hüger, E., Schmidt, H., Horisberger, M., Stahn, J., Lalla, N. P. Scripta Mater. 2009, 61, 1117.10.1016/j.scriptamat.2009.08.035Search in Google Scholar

20. Parratt, L. G. Phys. Rev. 1954, 95, 359. https://doi.org/10.1103/PhysRev.95.359.Search in Google Scholar

21. Lee, J.‐H., Rozgonyi, G. A., Patnaik, B. K., KnoesenAdams, D. D., Balducci, P., Salih, A. S. M. J. Appl. Phys. 1993, 73, 4023. https://doi.org/10.1063/1.352869.Search in Google Scholar

22. Patterson, A. L. Phys. Rev. 1939, 56, 978. https://doi.org/10.1103/PhysRev.56.978.Search in Google Scholar

23. Daillant, J., Gibaud, A., Eds. X-ray and Neutron Reflectivity. Principles and Applications; Lecture Notes in Physics, Vol. 770; Springer: Berlin, Heidelberg, 2009; p. 117 (Chap 3).10.1007/978-3-540-88588-7Search in Google Scholar

24. Singh, S., Basu, S., Gupta, M., Majkrzak, C. F., Kienzle, P. A. Phys. Rev. B 2010, 81, 235413. https://doi.org/10.1103/PhysRevB.81.235413.Search in Google Scholar

25. Swain, M., Singh, S., Basu, S., Gupta, M. J. Alloys Compd. 2013, 576, 257. https://doi.org/10.1016/j.jallcom.2013.04.140.Search in Google Scholar

26. Swain, M., Singh, S., Basu, S., Bhattacharya, D., Gupta, M. J. Appl. Phys. 2014, 116, 222208. https://doi.org/10.1063/1.4902965.Search in Google Scholar

27. Grigorov, G. I., Martev, I. N., Langeron, J. P., Vignes, J. L. Thin Solid Films 1988, 161, 249. https://doi.org/10.1016/0040-6090(88)90256-8.Search in Google Scholar

28. Skriver, H. L., Rosengaard, N. M. Phys. Rev. B 1992, 46, 7157. https://doi.org/10.1103/PhysRevB.46.7157.Search in Google Scholar

29. Kumar, P., Ghanashyamkrishna, M., Bhattacharya, A. K. Bull. Mater. Sci. 2009, 32, 263. https://doi.org/10.1007/s12034-009-0040-x.Search in Google Scholar

30. Coey, J. M. D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, 2009.Search in Google Scholar

31. Gulen, M., Yildirim, G., Bal, S., Varilci, A., Belenli, I., Oz, M. J. Mater. Sci. Mater. Electron. 2012, 24, 468.10.1007/s10854-012-0768-8Search in Google Scholar

Received: 2022-02-08
Accepted: 2022-12-14
Published Online: 2023-04-14
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial ICPCM 2021
  4. Original Papers
  5. Developing easy-to-use, cost-effective wound dressing material by coating commercial cotton bandages with nanomaterials
  6. Temperature and magnetic field controlled dielectric relaxation and magnetodielectric response in KBiFe1.9Co0.1O5 polycrystalline
  7. Influence of thermo-mechanical treatment in austenitic and ferritic field condition on microstructural and mechanical properties of reduced activation ferritic-martensitic steel
  8. Effect of nanoparticle on mechanical properties of activated tungsten gas welding of austenite stainless steel 316L and optimization of process parameters
  9. Flexural behavior of carbon/glass inter-ply hybrid FRP composites under elevated temperature environments
  10. Surfactant assisted single step electrodeposition of CuInSe2 thin films with rich indium selenide surface over layer
  11. Optimization of hot rolling parameters of CRNO steel with the aid of hot compression test and deformation map
  12. Reduced graphene oxide synthesis by dry planetary ball milling followed by arc plasma treatment of high pure graphite
  13. Influence of interphase characteristics on the elastic modulus of unidirectional glass-reinforced epoxy composites: a computational micromechanics study
  14. Investigation of dielectric, impedance, and magnetodielectric behavior in Bi5Ti3FeO15–Bi2Fe4O9 composites prepared by sol–gel modified method
  15. Effect of spheroidization annealing on low cycle fatigue (LCF) characteristics of cold forged steel components
  16. Growth of CuO nanoparticles using one step chemical bath deposition under microwave heating and their characterizations
  17. Phase formation and electrical properties study of PVDF thick films synthesized by solution casting method
  18. Generation of microchannels on PMMA using an in-house fabricated μ-ECDM system
  19. Temperature dependent constitutive plastic flow behaviour of titanium alloy Ti6Al4V
  20. Production and characterization of Al–Cu binary alloy produced by using novel continuous casting process
  21. Synthesis of Al–Sn alloys by direct chill casting under the effect of mechanical stirring: an experimental and simulation optimization study
  22. Evaluation of characteristics for microwave-assisted polymer coating of the steel substrate
  23. Synthesis and fabrication of acrylic acid treated rattan fiber epoxy composite
  24. Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption
  25. Effect of thermal annealing on structure and magnetic properties in a Ni–Cr multilayer
  26. Effect of heat input on corrosion behavior of automotive zinc-coated steel joint
  27. Development of Al–SiC–TiO2 hybrid composite using powder metallurgy route and the influence of TiO2 content variation on microstructure and mechanical properties
  28. News
  29. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0063/html
Scroll to top button