Home Investigation of dielectric, impedance, and magnetodielectric behavior in Bi5Ti3FeO15–Bi2Fe4O9 composites prepared by sol–gel modified method
Article
Licensed
Unlicensed Requires Authentication

Investigation of dielectric, impedance, and magnetodielectric behavior in Bi5Ti3FeO15–Bi2Fe4O9 composites prepared by sol–gel modified method

  • Rasmita Jena , Kouru Chandrakanta and Anil Kumar Singh ORCID logo EMAIL logo
Published/Copyright: April 5, 2023
Become an author with De Gruyter Brill

Abstract

We report detailed studies of the dielectric, impedance, and magnetodielectric properties of sol–gel synthesized (1−x)Bi5Ti3FeO15–(x)Bi2Fe4O9, x = 0.1 composites. The Rietveld refinement of X-ray diffraction data confirms the presence of mixed phases Bi5Ti3FeO15 (A21am) and Bi2Fe4O9 (Pbam) with the orthorhombic crystal structure. The average grain size of the sample is calculated from scanning electron microscopy and found to be 0.74 µm and 0.80 µm for BTFO and BFO samples, respectively. The room temperature dielectric behavior of the prepared composite is demonstrated over a frequency range (102 Hz to 106 Hz) and at different fixed magnetic fields (0 T to 1.3 T). The decreasing trend of dielectric dispersion and loss signifies the presence of negative magnetodielectric and magneto-loss in the composite. Frequency-dependent magnetoresistance through impedance spectroscopy has been carried out to analyze the origin of the observed MD effect. The magnetic field-dependent MD and ML exhibit maximum coupling of about −0.19% and −0.36% at 50 kHz, respectively. The obtained MD response in this composite is due to the grain (capacitive) effect. These results establish a relation between the electric and magnetic order in the composites and extend their application in the field of magnetic memory and sensor devices.


Corresponding author: Anil Kumar Singh, Department of Physics and Astronomy, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: All authors would like to acknowledge UGC-DAE Consortium for Scientific Research, Mumbai (Sanction No. CRS-M-187, 225) for funding.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Eerenstein, W., Mathur, N. D., Scott, J. F. Nature 2006, 442, 759. https://doi.org/10.1038/nature05023.Search in Google Scholar PubMed

2. Jia, T., Cheng, Z., Zhao, H., Kimura, H. Appl. Phys. Rev. 2018, 5, 021102. https://doi.org/10.1063/1.5018872.Search in Google Scholar

3. Nandy, S., Mocherla, P. S. V., Abdelhamid, E., Nadgorny, B., Naik, R., Sudakar, C. Phys. Rev. B 2021, 103, 184406. https://doi.org/10.1103/PhysRevB.103.184406.Search in Google Scholar

4. Chandrasekhar, K. D., Das, A. K., Venimadhanv, A. J. Phys. Condens. Matter 2012, 24, 495901. https://doi.org/10.1088/0953-8984/24/49/495901.Search in Google Scholar PubMed

5. Venimadhav, A., Chandrasekar, D., Murthy, J. K. Appl. Nanosci. 2013, 3, 25. https://doi.org/10.1007/s13204-012-0069-9.Search in Google Scholar

6. Vaz, C. A. F., Hoffman, J., Ahn, C. H., Ramesh, R. J. Adv. Mater. 2010, 22, 2900. https://doi.org/10.1002/adma.200904326.Search in Google Scholar PubMed

7. Cheng, Y., Peng, B., Hu, Z., Zhou, Z., Liu, M. Phys. Lett. A 2018, 382, 3018. https://doi.org/10.1016/j.physleta.2018.07.014.Search in Google Scholar

8. Nan, C.-W., Bichurin, M. I., Dong, S., Viehland, D., Srinivasan, G. J. Appl. Phys. 2008, 103, 031101. https://doi.org/10.1063/1.2836410.Search in Google Scholar

9. Newnham, R. E., Skinner, D. P., Cross, L. E. Mater. Res. Bull. 1978, 13, 525. https://doi.org/10.1016/0025-5408(78)90161-7.Search in Google Scholar

10. Ryu, J., Priya, S., Uchino, K., Kim, H.-E. J. Electroceram. 2002, 8, 107. https://doi.org/10.1023/A:1020599728432.10.1023/A:1020599728432Search in Google Scholar

11. Jena, R., Chandrakanta, K., Pal, P., Abdullah, M. F., Kaushik, S. D., Singh, A. K. Int. J. Miner. Metall. Mater. 2021, 28, 1063. https://doi.org/10.1007/s12613-020-2091-3.Search in Google Scholar

12. Chen, G., Bai, W., Sun, L., Wu, J., Ren, Q., Xu, W., Yang, J., Meng, X., Tang, X., Duan, C.-G., Chu, J. J. Appl. Phys. 2013, 113, 034901. https://doi.org/10.1063/1.4775800.Search in Google Scholar

13. Mohapatra, S. R., Vishwakarma, P. N., Kaushik, S. D., Choudhary, R. J., Mohapatra, N., Singh, A. K. J. Appl. Phys. 2017, 121, 124101. https://doi.org/10.1063/1.4979094.Search in Google Scholar

14. Singh, A. K., Kaushik, S. D., Kumar, B., Mishra, P. K., Venimadhav, A., Siruguri, V., Patnaik, S. Appl. Phys. Lett. 2008, 92, 132910. https://doi.org/10.1063/1.2905815.Search in Google Scholar

15. Jena, R., Chandrakanta, K., Pal, P., Abdullah, M. F., Singh, A. K. Mater. Today Proc. 2022, 50, 837. https://doi.org/10.1016/j.matpr.2021.06.062.Search in Google Scholar

16. Pradhan, D. K., Kumari, S., Vasudevan, R. K., Dugu, S., Das, P. T., Puli, V. S., Pradhan, D. K., Kalinin, S. V., Katiyar, R. S., Rack, P. D., Kumar, A. J. Appl. Phys. 2020, 127, 194104. https://doi.org/10.1063/5.0004480.Search in Google Scholar

17. Kumari, S., Pradhan, D. K., Das, P. T., Ortega, N., Pradhan, K., Kumar, A., Scott, J. F., Katiyar, R. S. J. Appl. Phys. 2017, 22, 144102. https://doi.org/10.1063/1.4994560.Search in Google Scholar

18. Chandrakanta, K., Jena, R., Pal, P., Abdullah, M. F., Mohapatra, S. R., Kaushik, S. D., Singh, A. K. J. Mater. Sci. Mater. Electron. 2020, 31, 15875. https://doi.org/10.1007/s10854-020-04149-1.Search in Google Scholar

19. Mandal, P. R., Sahoo, R., Nath, T. K. Phys. B. 2014, 448, 64. https://doi.org/10.1016/j.physb.2014.04.058.Search in Google Scholar

20. Jena, R., Chandrakanta, K., Abdullah, M. F., Pal, P., Kaushik, S. D., Singh, A. K. J. Mater. Sci. Mater. Electron. 2021, 32, 21379. https://doi.org/10.1007/s10854-021-06641-8.Search in Google Scholar

21. Dong, X. W., Wang, K. F., Wan, J. G., Zhu, J. S., Liu, J.-M. J. Appl. Phys. 2008, 103, 094101. https://doi.org/10.1063/1.2908219.Search in Google Scholar

22. Bai, W., Yin, W., Yang, J., Tang, K., Zhang, Y., Lin, T., Meng, X., Duan, C.-G., Tang, X., Chu, J. J. Appl. Phys. 2014, 116, 084103. https://doi.org/10.1063/1.4893710.Search in Google Scholar

23. Pikula, T., Dzik, J., Guzdek, P., Mitsiuk, V. I., Surowiec, Z., Panek, R., Jartych, E. Ceram. Int. 2017, 43, 11442. https://doi.org/10.1016/j.ceramint.2017.06.008.Search in Google Scholar

24. Kimura, T. Annu. Rev. Mater. Res. 2007, 37, 387. https://doi.org/10.1146/annurev.matsci.37.052506.084259.Search in Google Scholar

25. Jang, H. M., Park, J. H., Ryu, S., Shannigrahi, S. R. Appl. Phys. Lett. 2008, 93, 252904. https://doi.org/10.1063/1.3050533.Search in Google Scholar

26. Shen, Y., Sun, J., Li, L., Yao, Y., Zhou, C., Su, R., Yang, Y. J. Mater. Chem. C 2014, 2, 2545. https://doi.org/10.1039/c4tc00008k.Search in Google Scholar

Received: 2022-01-31
Accepted: 2022-12-14
Published Online: 2023-04-05
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial ICPCM 2021
  4. Original Papers
  5. Developing easy-to-use, cost-effective wound dressing material by coating commercial cotton bandages with nanomaterials
  6. Temperature and magnetic field controlled dielectric relaxation and magnetodielectric response in KBiFe1.9Co0.1O5 polycrystalline
  7. Influence of thermo-mechanical treatment in austenitic and ferritic field condition on microstructural and mechanical properties of reduced activation ferritic-martensitic steel
  8. Effect of nanoparticle on mechanical properties of activated tungsten gas welding of austenite stainless steel 316L and optimization of process parameters
  9. Flexural behavior of carbon/glass inter-ply hybrid FRP composites under elevated temperature environments
  10. Surfactant assisted single step electrodeposition of CuInSe2 thin films with rich indium selenide surface over layer
  11. Optimization of hot rolling parameters of CRNO steel with the aid of hot compression test and deformation map
  12. Reduced graphene oxide synthesis by dry planetary ball milling followed by arc plasma treatment of high pure graphite
  13. Influence of interphase characteristics on the elastic modulus of unidirectional glass-reinforced epoxy composites: a computational micromechanics study
  14. Investigation of dielectric, impedance, and magnetodielectric behavior in Bi5Ti3FeO15–Bi2Fe4O9 composites prepared by sol–gel modified method
  15. Effect of spheroidization annealing on low cycle fatigue (LCF) characteristics of cold forged steel components
  16. Growth of CuO nanoparticles using one step chemical bath deposition under microwave heating and their characterizations
  17. Phase formation and electrical properties study of PVDF thick films synthesized by solution casting method
  18. Generation of microchannels on PMMA using an in-house fabricated μ-ECDM system
  19. Temperature dependent constitutive plastic flow behaviour of titanium alloy Ti6Al4V
  20. Production and characterization of Al–Cu binary alloy produced by using novel continuous casting process
  21. Synthesis of Al–Sn alloys by direct chill casting under the effect of mechanical stirring: an experimental and simulation optimization study
  22. Evaluation of characteristics for microwave-assisted polymer coating of the steel substrate
  23. Synthesis and fabrication of acrylic acid treated rattan fiber epoxy composite
  24. Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption
  25. Effect of thermal annealing on structure and magnetic properties in a Ni–Cr multilayer
  26. Effect of heat input on corrosion behavior of automotive zinc-coated steel joint
  27. Development of Al–SiC–TiO2 hybrid composite using powder metallurgy route and the influence of TiO2 content variation on microstructure and mechanical properties
  28. News
  29. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0035/html
Scroll to top button