Home Technology Development of Al–SiC–TiO2 hybrid composite using powder metallurgy route and the influence of TiO2 content variation on microstructure and mechanical properties
Article
Licensed
Unlicensed Requires Authentication

Development of Al–SiC–TiO2 hybrid composite using powder metallurgy route and the influence of TiO2 content variation on microstructure and mechanical properties

  • Dinesh Kumar Mishra ORCID logo EMAIL logo , Rutuparna Pattanaik , Gourahari Behera , Renu Prava Dalai and Sushant Kumar Badjena
Published/Copyright: April 14, 2023

Abstract

In the present study, aluminum matrix was reinforced with SiC and TiO2 powders to synthesize Al–SiC–TiO2 hybrid composites by using a powder metallurgy route. The influence of variation in TiO2 content is thoroughly evaluated over the microstructure and mechanical properties. The uniform distribution and growth in the interfacial bonding between the matrix phase and reinforcement particles were confirmed from the overall scanning electron micrographs. Further, the measured hardness and density values significantly increased with the increase in TiO2 content. In addition to that, the compressive strength had increased up to 5 wt.% of TiO2. However, at higher content of TiO2, a decreasing trend is found due to the excess cluster formation.


Corresponding author: Dinesh Kumar Mishra, Department of Metallurgical & Materials Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur – 768018, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Jagannatham, M., Chandran, P., Sankaran, S., Haridoss, P., Nayan, N., Bakshi, S. R. Carbon 2020, 160, 14. https://doi.org/10.1016/j.carbon.2020.01.007.Search in Google Scholar

2. Reddy, M. P., Himyan, M. A., Ubaid, F., Shakoor, R. A., Vyasaraj, M., Gururaj, P., Yusuf, M., Mohamed, A. M. A., Gupta, M. Ceram. Int. 2018, 44, 9247. https://doi.org/10.1016/j.ceramint.2018.02.135.Search in Google Scholar

3. Dalai, R. P., Nath, S., Mishra, D. K., Behera, G. Mater. Today Proc. 2020, 26, 1841. https://doi.org/10.1016/j.matpr.2020.02.404.Search in Google Scholar

4. Behera, B., Dalai, R. P., Mishra, D. K., Badjena, S. K. Mater. Sci. Forum 2020, 978, 202. https://doi.org/10.4028/www.scientific.net/MSF.978.202.Search in Google Scholar

5. Tayebi, M., Tayebi, M., Rajaee, M., Ghafarnia, V., Rizi, A. M. J. Alloys Compd. 2021, 853, 156794. https://doi.org/10.1016/j.jallcom.2020.156794.Search in Google Scholar

6. Ozden, S., Ekici, R., Nair, F. Composites Part A 2007, 38, 484. https://doi.org/10.1016/j.compositesa.2006.02.026.Search in Google Scholar

7. Mattli, M. R., Matli, P. R., Khan, A., Abdelatty, R. H., Yusuf, M., Ashraf, A. A., Kotalo, R. G., Shakoor, R. A. Crystals 2021, 11, 1078. https://doi.org/10.3390/cryst11091078.Search in Google Scholar

8. Kumar, C. A. V., Rajadurai, J. S. Trans. Nonferrous Metals Soc. China 2016, 26, 63. https://doi.org/10.1016/S1003-6326(16)64089-X.Search in Google Scholar

9. Elango, G., Raghunath, B. K. Procedia Eng. 2013, 64, 671. https://doi.org/10.1016/j.proeng.2013.09.142.Search in Google Scholar

10. Albert, T., Sunil, J., Christopher, A. S., Jegan, R., Prabhu, P. A., Selvaganesan, M. Mater. Today Proc. 2021, 37, 1558. https://doi.org/10.1016/j.matpr.2020.07.155.Search in Google Scholar

11. Pandey, U., Purohit, R., Agarwal, P., Singh, S. K. Mater. Today Proc. 2018, 5, 4106. https://doi.org/10.1016/j.matpr.2017.11.671.Search in Google Scholar

12. Tayebi, M., Jozdani, M., Mirhadi, M. J. Alloys Compd. 2019, 809, 151753. https://doi.org/10.1016/j.jallcom.2019.151753.Search in Google Scholar

13. Ravichandran, M., Manikandan, A., Omkumar, M. S. Appl. Mech. Mater. 2016, 852, 93. https://doi.org/10.4028/www.scientific.net/AMM.852.93.Search in Google Scholar

14. Liao, J., Tan, M. J. Powder Technol. 2011, 208, 42. https://doi.org/10.1016/j.powtec.2010.12.001.Search in Google Scholar

15. Akbarpour, M. R., Pouresmaeil, A. Diam. Relat. Mater. 2018, 88, 6. https://doi.org/10.1016/j.diamond.2018.06.021.Search in Google Scholar

16. Herzallah, H., Elsayd, A., Shash, A., Adly, M. J. Mater. Res. Technol. 2020, 9, 1948. https://doi.org/10.1016/j.jmrt.2019.12.027.Search in Google Scholar

17. Shen, Z., Ji, G., Addad, A., Lu, C. L. Y., Silvain, J. F. Diam. Relat. Mater. 2021, 118, 108513. https://doi.org/10.1016/j.diamond.2021.108513.Search in Google Scholar

18. AbuShanab, W. S., Moustafa, E. B., Ghandourah, E., Taha, M. A. Results Phys. 2020, 19, 103343. https://doi.org/10.1016/j.rinp.2020.103343.Search in Google Scholar

19. Yu, H., Zhang, S. Q., Xia, J. H., Su, Q., Ma, B. C., Wu, J. H., Zhou, J. X., Wang, X. T., Hu, L. X. Mater. Sci. Eng. A 2021, 802, 140669. https://doi.org/10.1016/j.msea.2020.140669.Search in Google Scholar

20. Hossain, S., Rahman, M. M., Chawla, D., Kumar, A., Seth, P. P., Gupta, P., Kumar, D., Agrawal, R., Jamwal, A. Mater. Today Proc. 2020, 21, 1458. https://doi.org/10.1016/j.matpr.2019.10.089.Search in Google Scholar

21. Zhang, F. L., Wang, C. Y., Zhu, M. Scripta Mater. 2003, 49, 1123–1128. https://doi.org/10.1016/j.scriptamat.2003.08.009.Search in Google Scholar

22. Yu, Z., Yang, W., Zhou, C., Zhang, N., Chao, Z., Cao, Y., Sun, Y., Shao, P., Wu, G. Carbon 2018, 141, 25–29. https://doi.org/10.1016/j.carbon.2018.09.041.Search in Google Scholar

23. Manohar, G., Dey, A., Pandey, K. M., Maity, S. R. AIP Conf. Proc. 2018, 1952, 020041. https://doi.org/10.1063/1.5032003.Search in Google Scholar

24. Kim, H. N., Kim, J. W., Kim, M. S., Lee, B. H., Kim, J. C. Minerals 2019, 9, 668. https://doi.org/10.3390/min9110668.Search in Google Scholar

25. Sheikhzadeh, M., Sanjabi, S. Mater. Des. 2012, 39, 366–372. https://doi.org/10.1016/j.matdes.2012.02.011.Search in Google Scholar

26. Ramesh, C. S., Khan, A. A., Ravikumar, N., Savanprabhu, P. Wear 2005, 259, 602. https://doi.org/10.1016/j.wear.2005.02.115.Search in Google Scholar

27. Anggara, B. S., Handoko, E., Soegijono, B. AIP Conf. Proc. 2014, 1617, 109. https://doi.org/10.1063/1.4897116.Search in Google Scholar

28. Datta, J., Kosiorek, P., Wloch, M. Iran. Polym. J. (Engl. Ed.) 2016, 25, 1021–1035. https://doi.org/10.1007/s13726-016-0488-7.Search in Google Scholar

29. Pinto, D., Bernardo, L., Amaro, A., Lopes, S. Construct. Build. Mater. 2015, 95, 506–524. https://doi.org/10.1016/j.conbuildmat.2015.07.124.Search in Google Scholar

30. Hanemann, T., Szabo, D. V. Materials 2010, 3, 3468–3517. https://doi.org/10.3390/ma3063468.Search in Google Scholar

31. Lata, S., Pandey, A., Sharma, A., Meena, K., Rana, R., Lal, R. Mater. Today Proc. 2018, 5, 6090–6097. https://doi.org/10.1016/j.matpr.2017.12.214.Search in Google Scholar

Received: 2022-02-16
Accepted: 2022-07-16
Published Online: 2023-04-14
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial ICPCM 2021
  4. Original Papers
  5. Developing easy-to-use, cost-effective wound dressing material by coating commercial cotton bandages with nanomaterials
  6. Temperature and magnetic field controlled dielectric relaxation and magnetodielectric response in KBiFe1.9Co0.1O5 polycrystalline
  7. Influence of thermo-mechanical treatment in austenitic and ferritic field condition on microstructural and mechanical properties of reduced activation ferritic-martensitic steel
  8. Effect of nanoparticle on mechanical properties of activated tungsten gas welding of austenite stainless steel 316L and optimization of process parameters
  9. Flexural behavior of carbon/glass inter-ply hybrid FRP composites under elevated temperature environments
  10. Surfactant assisted single step electrodeposition of CuInSe2 thin films with rich indium selenide surface over layer
  11. Optimization of hot rolling parameters of CRNO steel with the aid of hot compression test and deformation map
  12. Reduced graphene oxide synthesis by dry planetary ball milling followed by arc plasma treatment of high pure graphite
  13. Influence of interphase characteristics on the elastic modulus of unidirectional glass-reinforced epoxy composites: a computational micromechanics study
  14. Investigation of dielectric, impedance, and magnetodielectric behavior in Bi5Ti3FeO15–Bi2Fe4O9 composites prepared by sol–gel modified method
  15. Effect of spheroidization annealing on low cycle fatigue (LCF) characteristics of cold forged steel components
  16. Growth of CuO nanoparticles using one step chemical bath deposition under microwave heating and their characterizations
  17. Phase formation and electrical properties study of PVDF thick films synthesized by solution casting method
  18. Generation of microchannels on PMMA using an in-house fabricated μ-ECDM system
  19. Temperature dependent constitutive plastic flow behaviour of titanium alloy Ti6Al4V
  20. Production and characterization of Al–Cu binary alloy produced by using novel continuous casting process
  21. Synthesis of Al–Sn alloys by direct chill casting under the effect of mechanical stirring: an experimental and simulation optimization study
  22. Evaluation of characteristics for microwave-assisted polymer coating of the steel substrate
  23. Synthesis and fabrication of acrylic acid treated rattan fiber epoxy composite
  24. Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption
  25. Effect of thermal annealing on structure and magnetic properties in a Ni–Cr multilayer
  26. Effect of heat input on corrosion behavior of automotive zinc-coated steel joint
  27. Development of Al–SiC–TiO2 hybrid composite using powder metallurgy route and the influence of TiO2 content variation on microstructure and mechanical properties
  28. News
  29. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0085/html
Scroll to top button