Startseite Generation of microchannels on PMMA using an in-house fabricated μ-ECDM system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generation of microchannels on PMMA using an in-house fabricated μ-ECDM system

  • Bhargav K. V. J. ORCID logo EMAIL logo , Balaji P. S. und Ranjeet Kumar Sahu
Veröffentlicht/Copyright: 20. April 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Electrochemical corona discharge micromachining (µ-ECDM) is a newly advented, advanced hybrid machining process capable of machining non-conducting and conducting materials. In this article, Polymethyl methacrylate (PMMA), a non-conducting material, often used in microfluidic applications, is machined to generate microchannels. The process parameters chosen for machining are voltage, duty factor, and concentration. The process parameters are chosen at three levels, and their effect on machining characteristics such as material removal rate and surface roughness are detailed in this paper. Optimization is carried out for individual response using the signal to noise ratio optimization technique for maximizing material removal rate and minimizing surface roughness.


Corresponding author: Bhargav K. V. J., Department of Mechanical Engineering, National Institute of Technology Rourkela, 769008 Rourkela, Odisha, India, E-mail:

Funding source: National Institute of Technology Rourkela

Award Identifier / Grant number: Unassigned

Acknowledgement

The authors are thankful to the Department of mechanical engineering, National Institute of Technology Rourkela (NIT RKL).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Huang, L., Cao, Y., Jia, F., Lei, Y. Microsyst. Technol. 2020, 26, 947. https://doi.org/10.1007/s00542-019-04623-9.Suche in Google Scholar

2. Bhargav, K. V. J., Balaji, P. S., Sahu, R. K., Katiyar, J. K. Mater. Manuf. Process. 2022, 38, 1, https://doi.org/10.1080/10426914.2022.2072879.Suche in Google Scholar

3. Venu, S., Bhargav, K. V. J., Balaji, P. S. Manufacturing Engineering; Springer: Singapore, 2020.Suche in Google Scholar

4. Jain, V. K. Introduction to Micromachining; Narosa Publishing House: New Delhi, 2012.Suche in Google Scholar

5. Bhargav, K. V. J., Balaji, P. S., Sahu, R. K. Mater. Manuf. Process. 2022, 38, 1, https://doi.org/10.1080/10426914.2022.2089893.Suche in Google Scholar

6. Cook, N. H., Foote, G. B., Jordan, P., Kalyani, B. N. J. Eng. Ind. 1973, 95, 945. https://doi.org/10.1115/1.3438273.Suche in Google Scholar

7. Crichton, I. M., McGeough, J. A. J. Appl. Electrochem. 1985, 15, 113. https://doi.org/10.1007/BF00617748.Suche in Google Scholar

8. Bhargav, K. V. J., Shanthan, P., Balaji, P. S., Sahu, R. K., Sahoo, S. K. CIRP J. Manuf. Sci. Technol. 2022, 38, 695. https://doi.org/10.1016/j.cirpj.2022.06.015.Suche in Google Scholar

9. Behroozfar, A., Razfar, M. R. Mater. Manuf. Process. 2016, 31, 574. https://doi.org/10.1080/10426914.2015.1004685.Suche in Google Scholar

10. Ho, C. C., Huang, B. H., Chu, P. C. Int. J. Adv. Manuf. Technol. 2021, 115, 367. https://doi.org/10.1007/s00170-021-07170-8.Suche in Google Scholar

11. Wei, C., Ni, J., Hu, D. Transactions of the North American Manufacturing Research Institution of SME; Society of Manufacturing Engineers: Dearborn, vol. 38, 2010.Suche in Google Scholar

12. Yang, C. K., Cheng, C. P., Mai, C. C., Cheng Wang, A., Hung, J. C., Yan, B. H. Int. J. Mach. Tools Manufact. 2010, 50, 1088. https://doi.org/10.1016/j.ijmachtools.2010.08.006.Suche in Google Scholar

13. Liu, J., Huang, Q., Wu, M., Zou, Z., Lin, Z., Guo, Z., He, J., Chen, X. Sci. Eng. Compos. Mater. 2020, 27, 346. https://doi.org/10.1515/secm-2020-0038.Suche in Google Scholar

14. Yang, C. K., Wu, K. L., Hung, J. C., Lee, S. M., Lin, J. C., Biing Hwa, Y. Int. J. Mach. Tools Manufact. 2011, 51, 528. https://doi.org/10.1016/j.ijmachtools.2011.03.001.Suche in Google Scholar

15. Kim, D. J., Ahn, Y., Lee, S., Kim, Y. K. Int. J. Mach. Tools Manufact. 2006, 46, 1064. https://doi.org/10.1016/j.ijmachtools.2005.08.011.Suche in Google Scholar

16. Bhargav, K. V. J., Balaji, P. S., Sahu, R. K., Katiyar, J. K. CIRP J. Manuf. Sci. Technol. 2022, 38, 473. https://doi.org/10.1016/j.cirpj.2022.05.020.Suche in Google Scholar

17. Madhavi, J. B., Hiremath, S. S.: Proc. Technol. 2016, 25, 1257. https://doi.org/10.1016/j.protcy.2016.08.219.Suche in Google Scholar

18. Korkmaz, E., Onler, R., Ozdoganlar, O. B. Procedia Manuf. 2017, 10, 683. https://doi.org/10.1016/j.promfg.2017.07.017.Suche in Google Scholar

19. Koilraj, M., Sundareswaran, V., Vijayan, S., Koteswara Rao, S. R. Mater. Des. 2012, 42, 1. https://doi.org/10.1016/j.matdes.2012.02.016.Suche in Google Scholar

20. Sahoo, P., Pal, S. K. Tribol. Lett. 2007, 28, 191. https://doi.org/10.1007/s11249-007-9264-3.Suche in Google Scholar

21. Prakash, S., Kumar, S. Int. J. Precis. Eng. Manuf. 2015, 16, 361. https://doi.org/10.1007/s12541-015-0047-8.Suche in Google Scholar

Received: 2022-02-16
Accepted: 2022-06-22
Published Online: 2023-04-20
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial ICPCM 2021
  4. Original Papers
  5. Developing easy-to-use, cost-effective wound dressing material by coating commercial cotton bandages with nanomaterials
  6. Temperature and magnetic field controlled dielectric relaxation and magnetodielectric response in KBiFe1.9Co0.1O5 polycrystalline
  7. Influence of thermo-mechanical treatment in austenitic and ferritic field condition on microstructural and mechanical properties of reduced activation ferritic-martensitic steel
  8. Effect of nanoparticle on mechanical properties of activated tungsten gas welding of austenite stainless steel 316L and optimization of process parameters
  9. Flexural behavior of carbon/glass inter-ply hybrid FRP composites under elevated temperature environments
  10. Surfactant assisted single step electrodeposition of CuInSe2 thin films with rich indium selenide surface over layer
  11. Optimization of hot rolling parameters of CRNO steel with the aid of hot compression test and deformation map
  12. Reduced graphene oxide synthesis by dry planetary ball milling followed by arc plasma treatment of high pure graphite
  13. Influence of interphase characteristics on the elastic modulus of unidirectional glass-reinforced epoxy composites: a computational micromechanics study
  14. Investigation of dielectric, impedance, and magnetodielectric behavior in Bi5Ti3FeO15–Bi2Fe4O9 composites prepared by sol–gel modified method
  15. Effect of spheroidization annealing on low cycle fatigue (LCF) characteristics of cold forged steel components
  16. Growth of CuO nanoparticles using one step chemical bath deposition under microwave heating and their characterizations
  17. Phase formation and electrical properties study of PVDF thick films synthesized by solution casting method
  18. Generation of microchannels on PMMA using an in-house fabricated μ-ECDM system
  19. Temperature dependent constitutive plastic flow behaviour of titanium alloy Ti6Al4V
  20. Production and characterization of Al–Cu binary alloy produced by using novel continuous casting process
  21. Synthesis of Al–Sn alloys by direct chill casting under the effect of mechanical stirring: an experimental and simulation optimization study
  22. Evaluation of characteristics for microwave-assisted polymer coating of the steel substrate
  23. Synthesis and fabrication of acrylic acid treated rattan fiber epoxy composite
  24. Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption
  25. Effect of thermal annealing on structure and magnetic properties in a Ni–Cr multilayer
  26. Effect of heat input on corrosion behavior of automotive zinc-coated steel joint
  27. Development of Al–SiC–TiO2 hybrid composite using powder metallurgy route and the influence of TiO2 content variation on microstructure and mechanical properties
  28. News
  29. DGM – Deutsche Gesellschaft für Materialkunde
Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0089/html
Button zum nach oben scrollen