Startseite Reduced graphene oxide synthesis by dry planetary ball milling followed by arc plasma treatment of high pure graphite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reduced graphene oxide synthesis by dry planetary ball milling followed by arc plasma treatment of high pure graphite

  • Prakash Chandra Sahoo , Tapan Dash ORCID logo EMAIL logo , Subash Ch Mallick und Surendra Kumar Biswal
Veröffentlicht/Copyright: 4. April 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We have successfully prepared a challenging and wonderful material, reduced graphene oxide (RGO)/graphene with improved quality from high pure graphite (HPG) efficiently by planetary ball milling process followed by arc plasma treatment under hydrogen atmosphere. Graphene oxides (GO) have been synthesized with varying degrees of oxidation via the planetary ball milling route by milling HPG between 3 8 h. The lowest C/O ratio (0.965) was observed for the 8 h ball milled sample. The as-prepared GOs were taken for only five min of arc plasma treatment under a hydrogen atmosphere. As the typical GO (prepared by 8 h ball milling) underwent a reduction by plasma treatment for producing a typical RGO sample, it was found that the C/O ratio increased from 0.965 in GO to 14.86 in RGO. RGO shows a hexagonal structure with well-defined crystallinity. Bi-layered and transparent types of structures were found in the RGO sample. The typical plasma treated RGO sample (prepared from 8 h ball milled GO sample) exhibits extraordinary BET surface area and electrical conductivity values of 1230.0 m2 g−1 and 4.587 × 103 S cm−1, respectively, compared to those of HPG.


Corresponding author: Tapan Dash, Centurion University of Technology and Management, Sitapur, Odisha, India; and International PranaGraf Mintech Research Centre (IGMRC) (Formerly Tirupati Graphene & Mintech Research Centre), Bhubaneswar, Odisha, India, E-mail:

Acknowledgment

Authors are thankful to Dr. Surendra Kumar Biswal, the CEO & MD of International PranaGraf Mintech Research Centre (IGMRC) (Formerly Tirupati Graphene & Mintech Research Centre) and Prof. Supriya Pattanayak, the VC of Centurion University of Technology and Management, Odisha, India for their encouragement and support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Brodie, B. C. Ann. Chim. Phys. 1860, 59, 466.Suche in Google Scholar

2. Geim, A. K., Novoselov, K. S. Nat. Mater. 2007, 6, 183. https://doi.org/10.1038/nmat1849.Suche in Google Scholar PubMed

3. Dash, T., Rout, T. K., Palei, B. B., Bajpai, S., Kundu, S., Bhagat, A. N., Satpathy, B. K., Biswal, S. K., Rajput, A., Sahu, A. K., Biswal, S. K. SN Appl. Sci. 2020, 2, 1. https://doi.org/10.1007/s42452-020-2672-9.Suche in Google Scholar

4. Chen, F., Gupta, N., Behera, R. K., Rohatgi, P. K. JOM 2018, 70, 837. https://doi.org/10.1007/s11837-018-2810-7.Suche in Google Scholar

5. Nieto, A., Bisht, A., Lahiri, D., Zhang, C., Agarwal, A. Int. Mater. Rev. 2017, 62, 241. https://doi.org/10.1080/09506608.2016.1219481.Suche in Google Scholar

6. Han, Z., Huang, L., Qu, H., Wang, Y., Zhang, Z., Rong, Q., Sang, Z., Wang, Y., Kipper, M., Tang, J. J. Mater. Sci. 2021, 56, 9545. https://doi.org/10.1007/s10853-021-05873-7.Suche in Google Scholar

7. Dash, P., Dash, T., Rout, T. K., Sahu, A. K., Biswal, S. K., Mishra, B. K. RSC Adv. 2016, 15, 12657. https://doi.org/10.1039/C5RA26491J.Suche in Google Scholar

8. Allen, M. J., Tung, V. C., Kaner, R. B. Chem. Rev. 2010, 110, 132–145. https://doi.org/10.1021/cr900070d.Suche in Google Scholar PubMed

9. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., Iijima, S. Nat. Nanotechnol. 2010, 5, 574. https://doi.org/10.1038/nnano.2010.132.Suche in Google Scholar PubMed

10. Ciszewski, M., Mianowski, A., Nawrat, G. J. Mater. Sci. Mater. Electron. 2013, 24, 3382. https://doi.org/10.1007/s10854-013-1259-2.Suche in Google Scholar

11. Jeon, I. Y., Choi, H. J., Jung, S. M., Seo, J. M., Kim, M. J., Dai, L., Baek, J. B. J. Am. Chem. Soc. 2013, 30, 1386. https://doi.org/10.1021/ja3091643.Suche in Google Scholar PubMed

12. Rao, K., Senthilnathan, J., Liu, Y. F., Yoshimura, M. Sci. Rep. 2014, 4, 1. https://doi.org/10.1038/srep04237.Suche in Google Scholar PubMed PubMed Central

13. Ruoff, R. Nat. Nanotechnol. 2008, 3, 10. https://doi.org/10.1038/nnano.2007.432.Suche in Google Scholar PubMed

14. Wang, H., Robinson, J. T., Li, X., Dai, H. J. Am. Chem. Soc. 2009, 131, 9910. https://doi.org/10.1021/ja904251p.Suche in Google Scholar PubMed

15. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. B. T., Ruoff, R. S. Carbon 2007, 45, 1558. https://doi.org/10.1016/j.carbon.2007.02.034.Suche in Google Scholar

16. Fan, Z. J., Kai, W., Yan, J., Wei, T., Zhi, L. J., Feng, J., Ren, Y. M., Song, L. P., Wei, F. ACS Nano 2011, 5, 191. https://doi.org/10.1021/nn102339t.Suche in Google Scholar PubMed

17. Yang, S., Yue, W., Huang, D., Chen, C., Lin, H., Yang, X. RSC Adv. 2012, 2, 8827. https://doi.org/10.1039/C2RA20746J.Suche in Google Scholar

18. Cui, P., Lee, J., Hwang, E., Lee, H. Chem. Commun. 2011, 47, 12370. https://doi.org/10.1039/C1CC15569E.Suche in Google Scholar PubMed

19. Fernández-Merino, M. J., Guardia, L., Paredes, J. I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., Tascón, J. M. D. J. Phys. Chem. C 2010, 114, 6426. https://doi.org/10.1021/jp100603h.Suche in Google Scholar

20. Fraih, A. J., Mutlaq, H. M. Eur. Phys. J. Appl. Phys. 2021, 95, 30101. https://doi.org/10.1051/epjap/2021210108.Suche in Google Scholar

21. Mahmoud, A. E. D., Stolle, A., Stelter, M. ACS Sustain. Chem. Eng. 2018, 6, 6358. https://doi.org/10.1021/acssuschemeng.8b00147.Suche in Google Scholar

22. Zhao, W., Fang, M., Wu, F., Wu, H., Wang, L., Chen, G. J. Mater. Chem. 2010, 20, 5817. https://doi.org/10.1039/C0JM01354D.Suche in Google Scholar

23. Zhang, M., Liu, L., He, T., Wu, G., Chen, P. Mater. Lett. 2016, 171, 191. https://doi.org/10.1016/j.matlet.2016.02.042.Suche in Google Scholar

24. Liu, L., Xiong, Z., Hu, D., Wu, G., Chen, P. Chem. Commun. 2013, 49, 7890. https://doi.org/10.1039/C3CC43670E.Suche in Google Scholar

25. Sun, P., Kuga, S., Wu, M., Huang, Y. Cellule 2014, 21, 2469. https://doi.org/10.1007/s10570-014-0264-9.Suche in Google Scholar

26. Zhu, H., Cao, Y., Zhang, J., Zhang, W., Xu, Y., Guo, J., Yang, W., Liu, J. J. Mater. Sci. 2016, 51, 3675. https://doi.org/10.1007/s10853-015-9655-z.Suche in Google Scholar

27. Caicedo, F. M. C., López, E. V., Agarwal, A., Drozd, V., Durygin, A., Hernandez, A. F., Wang, C. Diam. Relat. Mater. 2020, 109, 108064. https://doi.org/10.1016/j.diamond.2020.108064.Suche in Google Scholar

28. Naira, A. S., Nallusamy, V., Jayasankara, K.S. Mater. Manuf. Process. 2022, 37, 113. https://doi.org/10.1080/10426914.2021.1945094.Suche in Google Scholar

29. Coleman, J. N. Acc. Chem. Res. 2012, 46, 14. https://doi.org/10.1021/ar300009f.Suche in Google Scholar PubMed

30. Dash, T., Nayak, B. B. Ceram. Int. 2013, 39, 3279. https://doi.org/10.1016/j.ceramint.2012.10.016.Suche in Google Scholar

31. Dash, T., Nayak, B. B. Ceram. Int. 2019, 45, 4771. https://doi.org/10.1016/j.ceramint.2018.11.170.Suche in Google Scholar

32. Lei, Y. D., Tang, Z. H., Liao, R. J., Guo, B. C. Green Chem. 2011, 13, 1655. https://doi.org/10.1039/C1GC15081B.Suche in Google Scholar

33. Wang, Y., Shi, Z. X., Yin, J. ACS Appl. Mater. Interfaces 2011, 3, 1127. https://doi.org/10.1021/am1012613.Suche in Google Scholar PubMed

34. Peng, H. D., Meng, L. J., Niu, L. Y., Lu, Q. H. J. Phys. Chem. C 2012, 116, 16294. https://doi.org/10.1021/jp3043889.Suche in Google Scholar

35. Khanra, P., Kuila, T., Kim, N. H., Bae, S. H., Yu, D.S., Lee, J. H. Chem. Eng. J. 2012, 183, 526. https://doi.org/10.1016/j.cej.2011.12.075.Suche in Google Scholar

36. Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S. Chem. Commun. 2010, 46, 1112. https://doi.org/10.1039/B917705A.Suche in Google Scholar PubMed

37. Li, J., Xiao, G. Y., Chen, C. B., Li, R., Yan, D. Y. J. Mater. Chem. A 2013, 1, 1481. https://doi.org/10.1039/C2TA00638C.Suche in Google Scholar

38. Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., Yan, J., Chen, K. Sci. Rep. 2014, 4, 1. https://doi.org/10.1038/srep04684.F.Suche in Google Scholar

Received: 2022-02-10
Accepted: 2022-07-20
Published Online: 2023-04-04
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial ICPCM 2021
  4. Original Papers
  5. Developing easy-to-use, cost-effective wound dressing material by coating commercial cotton bandages with nanomaterials
  6. Temperature and magnetic field controlled dielectric relaxation and magnetodielectric response in KBiFe1.9Co0.1O5 polycrystalline
  7. Influence of thermo-mechanical treatment in austenitic and ferritic field condition on microstructural and mechanical properties of reduced activation ferritic-martensitic steel
  8. Effect of nanoparticle on mechanical properties of activated tungsten gas welding of austenite stainless steel 316L and optimization of process parameters
  9. Flexural behavior of carbon/glass inter-ply hybrid FRP composites under elevated temperature environments
  10. Surfactant assisted single step electrodeposition of CuInSe2 thin films with rich indium selenide surface over layer
  11. Optimization of hot rolling parameters of CRNO steel with the aid of hot compression test and deformation map
  12. Reduced graphene oxide synthesis by dry planetary ball milling followed by arc plasma treatment of high pure graphite
  13. Influence of interphase characteristics on the elastic modulus of unidirectional glass-reinforced epoxy composites: a computational micromechanics study
  14. Investigation of dielectric, impedance, and magnetodielectric behavior in Bi5Ti3FeO15–Bi2Fe4O9 composites prepared by sol–gel modified method
  15. Effect of spheroidization annealing on low cycle fatigue (LCF) characteristics of cold forged steel components
  16. Growth of CuO nanoparticles using one step chemical bath deposition under microwave heating and their characterizations
  17. Phase formation and electrical properties study of PVDF thick films synthesized by solution casting method
  18. Generation of microchannels on PMMA using an in-house fabricated μ-ECDM system
  19. Temperature dependent constitutive plastic flow behaviour of titanium alloy Ti6Al4V
  20. Production and characterization of Al–Cu binary alloy produced by using novel continuous casting process
  21. Synthesis of Al–Sn alloys by direct chill casting under the effect of mechanical stirring: an experimental and simulation optimization study
  22. Evaluation of characteristics for microwave-assisted polymer coating of the steel substrate
  23. Synthesis and fabrication of acrylic acid treated rattan fiber epoxy composite
  24. Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption
  25. Effect of thermal annealing on structure and magnetic properties in a Ni–Cr multilayer
  26. Effect of heat input on corrosion behavior of automotive zinc-coated steel joint
  27. Development of Al–SiC–TiO2 hybrid composite using powder metallurgy route and the influence of TiO2 content variation on microstructure and mechanical properties
  28. News
  29. DGM – Deutsche Gesellschaft für Materialkunde
Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0071/html
Button zum nach oben scrollen