Home Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption
Article
Licensed
Unlicensed Requires Authentication

Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption

  • Debabrata Panda ORCID logo and Krunal M. Gangawane EMAIL logo
Published/Copyright: April 6, 2023
Become an author with De Gruyter Brill

Abstract

A cost-effective and facile synthesis method is developed for hybrid aerogels using recycled cellulose fiber concentration of 1–4 wt.% and methoxytrimethylsilane (MTMS). The developed hybrid aerogel was modified with surface hydroxyl groups to achieve superhydrophobic behavior with a contact angle as high as 163.4°. This excellent three-dimensional reticular structure with various cellulose concentrations provides a thermal conductivity of 0.039–0.041 W m−1 K−1. However, the thermal degradation of the hybrid aerogels exhibits a superior improvement with minimum weight loss. A comparatively good sound absorption coefficient of 0.392–0.504 was achieved with the inclusion of cellulose fiber concentration from 1 to 4 wt.% in comparison with silica aerogels (0.303–0.512). The experimental results also show an increase in compressive Young’s modulus of hybrid aerogels up to 96%, with an increase in cellulose concentration. This work delivers a facile approach to developing hybrid aerogels with an industrial application to replace polymer-based insulations.


Corresponding author: Krunal M. Gangawane, Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Tisdell, C. Int. J. Soc. Econ. 2008, 35, 889–903. https://doi.org/10.1108/03068290810911444.Search in Google Scholar

2. Nema, P., Nema, S., Roy, P. Renew. Sustain. Energy Rev. 2012, 16, 2329–2336. https://doi.org/10.1016/j.rser.2012.01.044.Search in Google Scholar

3. Baetens, R., Jelle, B. P., Gustavsen, A. Energy Build. 2011, 43, 761–769. https://doi.org/10.1016/j.enbuild.2010.12.012.Search in Google Scholar

4. Cuce, E., Cuce, P. M., Wood, C. J., Riffat, S. B. Renew. Sustain. Energy Rev. 2014, 34, 273–299. https://doi.org/10.1016/j.rser.2014.03.017.Search in Google Scholar

5. Bronzaft, L., Hagler, L. Emerg. Environ. Technol. 2010, 2, 75–96. https://doi.org/10.1007/978-90-481-3352-9.Search in Google Scholar

6. Chen, D. R., Chang, X. H., Jiao, X. L. Aerogels in the Environment Protection; Elsevier B.V., 2014. https://doi.org/10.1016/B978-0-444-63283-8.00022-3.Search in Google Scholar

7. Seidman, M. D., Standring, R. T. Int. J. Environ. Res. Publ. Health 2010, 7, 3730–3738. https://doi.org/10.3390/ijerph7103730.Search in Google Scholar PubMed PubMed Central

8. Tzivian, L., Winkler, A., Dlugaj, M., Schikowski, T., Vossoughi, M., Fuks, K., Weinmayr, G., Hoffmann, B. Int. J. Hyg Environ. Health 2015, 218, 1–11. https://doi.org/10.1016/j.ijheh.2014.08.002.Search in Google Scholar PubMed

9. Cotana, F., Pisello, A. L., Moretti, E., Buratti, C. Build. Environ. 2014, 81, 92–102. https://doi.org/10.1016/j.buildenv.2014.06.014.Search in Google Scholar

10. Szabó, L., Soria, A., Forsström, J., Keränen, J. T., Hytönen, E. Environ. Sci. Pol. 2009, 12, 257–269. https://doi.org/10.1016/j.envsci.2009.01.011.Search in Google Scholar

11. Ikeda, Y., Park, E. Y., Okuda, N. Bioresour. Technol. 2006, 97, 1030–1035. https://doi.org/10.1016/j.biortech.2005.04.040.Search in Google Scholar PubMed

12. Cai, J., Liu, S., Feng, J., Kimura, S., Wada, M., Kuga, S., Zhang, L. Angew. Chem. 2012, 124, 2118–2121. https://doi.org/10.1002/ange.201105730.Search in Google Scholar

13. Du, A., Zhou, B., Zhang, Z., Shen, J. Materials 2013, 6, 941–968. https://doi.org/10.3390/ma6030941.Search in Google Scholar PubMed PubMed Central

14. Hüsing, N., Schubert, U. Angew. Chem. Int. Ed. 1998, 37, 22–45. https://doi.org/10.1002/(sici)1521-3773(19980202)37:1.10.1002/1521-3773(19980202)37:1/2<22::AID-ANIE22>3.3.CO;2-9Search in Google Scholar

15. Wagh, P. B., Begag, R., Pajonk, G. M., Rao, A. V., Haranath, D. Mater. Chem. Phys. 1999, 57, 214–218. https://doi.org/10.1016/S0254-0584(98)00217-X.Search in Google Scholar

16. Nguyen, S. T., Feng, J., Ng, S. K., Wong, J. P. W., Tan, V. B. C., Duong, H. M. Colloids Surf. A Physicochem. Eng. Asp. 2014, 445, 128–134. https://doi.org/10.1016/j.colsurfa.2014.01.015.Search in Google Scholar

17. Parale, V. G., Lee, K. Y., Park, H. H. J. Korean Ceram. Soc. 2017, 54, 184–199. https://doi.org/10.4191/kcers.2017.54.3.12.Search in Google Scholar

18. Parale, V. G., Han, W., Jung, H. N. R., Lee, K. Y., Park, H. H. Solid State Sci. 2018, 75, 63–70. https://doi.org/10.1016/j.solidstatesciences.2017.10.016.Search in Google Scholar

19. Asdrubali, F., Schiavoni, S., Horoshenkov, K. V. Build. Acoust. 2012, 19, 283–312. https://doi.org/10.1260/1351-010X.19.4.283.Search in Google Scholar

20. Demilecamps, A., Beauger, C., Hildenbrand, C., Rigacci, A., Budtova, T. Carbohydr. Polym. 2015, 122, 293–300. https://doi.org/10.1016/j.carbpol.2015.01.022.Search in Google Scholar

21. Demilecamps, A., Reichenauer, G., Rigacci, A., Budtova, T. Cellulose 2014, 21, 2625–2636. https://doi.org/10.1007/s10570-014-0314-3.Search in Google Scholar

22. Litschauer, M., Neouze, M. A., Haimer, E., Henniges, U., Potthast, A., Rosenau, T., Liebner, F. Cellulose 2011, 18, 143–149. https://doi.org/10.1007/s10570-010-9459-x.Search in Google Scholar

23. Wang, L., Sánchez-Soto, M. RSC Adv. 2015, 5, 31384–31391. https://doi.org/10.1039/c5ra02981c.Search in Google Scholar

24. Nguyen, S. T., Feng, J., Le, N. T., Le, A. T. T., Hoang, N., Tan, V. B. C., Duong, H. M. Ind. Eng. Chem. Res. 2013, 52, 18386–18391. https://doi.org/10.1021/ie4032567.Search in Google Scholar

25. Feng, J., Le, D., Nguyen, S. T., Nien, V. T. C., Jewell, D., Duong, H. M. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 298–305. https://doi.org/10.1016/j.colsurfa.2016.06.052.Search in Google Scholar

26. Sai, H., Xing, L., Xiang, J., Cui, L., Jiao, J., Zhao, C., Li, Z., Li, F. J. Mater. Chem. A 2013, 1, 7963–7970. https://doi.org/10.1039/c3ta11198a.Search in Google Scholar

27. Shi, J., Lu, L., Guo, W., Zhang, J., Cao, Y. Carbohydr. Polym. 2013, 98, 282–289. https://doi.org/10.1016/j.carbpol.2013.05.082.Search in Google Scholar PubMed

28. Rao, A. V., Kalesh, R. R. Sci. Technol. Adv. Mater. 2003, 4, 509–515. https://doi.org/10.1016/j.stam.2003.12.010.Search in Google Scholar

29. Parale, V. G., Jung, H. N. R., Han, W., Lee, K. Y., Mahadik, D. B., Cho, H. H., Park, H. H. J. Alloys Compd. 2017, 727, 871–878. https://doi.org/10.1016/j.jallcom.2017.08.189.Search in Google Scholar

30. Mathis, N. High. Temp. High. Press. 2000, 32, 321–327. https://doi.org/10.1068/htwu289.Search in Google Scholar

31. Cai, J., Zhang, L. Biomacromolecules 2006, 7, 183–189. https://doi.org/10.1021/bm0505585.Search in Google Scholar PubMed

32. Zhang, W., Zhang, Y., Lu, C., Deng, Y. J. Mater. Chem. 2012, 22, 11642–11650. https://doi.org/10.1039/c2jm30688c.Search in Google Scholar

33. Cai, J., Liu, S., Feng, J., Kimura, S., Wada, M., Kuga, S., Zhang, L. Angew. Chem. Int. Ed. 2012, 51, 2076–2079. https://doi.org/10.1002/anie.201105730.Search in Google Scholar PubMed

34. Holik, H. Handbook of Paper and Board; Wiley-VCH Verlag GmbH & Co. 2006. https://doi.org/10.1002/3527608257.Search in Google Scholar

35. Rao, A. V., Kulkarni, M. M., Amalnerkar, D. P., Seth, T. J. Non-Cryst. Solids 2003, 330, 187–195. https://doi.org/10.1016/j.jnoncrysol.2003.08.048.Search in Google Scholar

36. Shafi, S., Rasheed, T., Naz, R., Majeed, S., Bilal, M. J. Sol. Gel Sci. Technol. 2021, 98, 478–486. https://doi.org/10.1007/s10971-021-05530-0.Search in Google Scholar

37. Sequeira, S., Evtuguin, D. V., Portugal, I. Polym. Compos. 2009, 30, 1275–1282. https://doi.org/10.1002/pc.20691.Search in Google Scholar

38. Jia, N., Li, S. M., Ma, M. G., Zhu, J. F., Sun, R. C. Bioresources 2011, 6, 1186–1195. https://doi.org/10.15376/biores.6.2.1186-1195.10.15376/biores.6.2.1186-1195Search in Google Scholar

Received: 2022-02-09
Accepted: 2022-06-13
Published Online: 2023-04-06
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial ICPCM 2021
  4. Original Papers
  5. Developing easy-to-use, cost-effective wound dressing material by coating commercial cotton bandages with nanomaterials
  6. Temperature and magnetic field controlled dielectric relaxation and magnetodielectric response in KBiFe1.9Co0.1O5 polycrystalline
  7. Influence of thermo-mechanical treatment in austenitic and ferritic field condition on microstructural and mechanical properties of reduced activation ferritic-martensitic steel
  8. Effect of nanoparticle on mechanical properties of activated tungsten gas welding of austenite stainless steel 316L and optimization of process parameters
  9. Flexural behavior of carbon/glass inter-ply hybrid FRP composites under elevated temperature environments
  10. Surfactant assisted single step electrodeposition of CuInSe2 thin films with rich indium selenide surface over layer
  11. Optimization of hot rolling parameters of CRNO steel with the aid of hot compression test and deformation map
  12. Reduced graphene oxide synthesis by dry planetary ball milling followed by arc plasma treatment of high pure graphite
  13. Influence of interphase characteristics on the elastic modulus of unidirectional glass-reinforced epoxy composites: a computational micromechanics study
  14. Investigation of dielectric, impedance, and magnetodielectric behavior in Bi5Ti3FeO15–Bi2Fe4O9 composites prepared by sol–gel modified method
  15. Effect of spheroidization annealing on low cycle fatigue (LCF) characteristics of cold forged steel components
  16. Growth of CuO nanoparticles using one step chemical bath deposition under microwave heating and their characterizations
  17. Phase formation and electrical properties study of PVDF thick films synthesized by solution casting method
  18. Generation of microchannels on PMMA using an in-house fabricated μ-ECDM system
  19. Temperature dependent constitutive plastic flow behaviour of titanium alloy Ti6Al4V
  20. Production and characterization of Al–Cu binary alloy produced by using novel continuous casting process
  21. Synthesis of Al–Sn alloys by direct chill casting under the effect of mechanical stirring: an experimental and simulation optimization study
  22. Evaluation of characteristics for microwave-assisted polymer coating of the steel substrate
  23. Synthesis and fabrication of acrylic acid treated rattan fiber epoxy composite
  24. Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption
  25. Effect of thermal annealing on structure and magnetic properties in a Ni–Cr multilayer
  26. Effect of heat input on corrosion behavior of automotive zinc-coated steel joint
  27. Development of Al–SiC–TiO2 hybrid composite using powder metallurgy route and the influence of TiO2 content variation on microstructure and mechanical properties
  28. News
  29. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0066/html
Scroll to top button