Abstract
In this paper, suggestions from molecular dynamics on the plastic deformation mechanism of nanocrystalline (nc) fcc metals are discussed. Investigation of the local average stress in the grain boundaries during deformation highlights the role of the non-equilibrium grain boundary structure in both inter- and intra-deformation processes. The relevance of the mechanism suggested by computer simulations is discussed in terms of the inherent restrictions of the technique and experimental observations.
-
This work was supported by the Swiss NSF Grant No. 21–65152.01.
References
[1] H. Gleiter: 2nd Risø Int. Symp. Metall. and Mat. Sci., N. Hansen, A. Horsewell, H. Lilholt (Eds.), Risø National Laboratory, Denmark, (1981) 15.Suche in Google Scholar
[2] H. Gleiter: Acta Mater. 48 (2000) 1.10.1016/S1359-6454(99)00285-2Suche in Google Scholar
[3] E.O. Hall: Proc. Phys. Soc. London B64 (1951) 747.10.1088/0370-1301/64/9/303Suche in Google Scholar
[4] N.J. Petch, J. Iron: Steel Inst. London 74 (1953) 25.Suche in Google Scholar
[5] J.R. Weertman: Mechanical behaviour of nanocrystalline metals, Nanostructured Materials: Processing, Properties, and Potential Applications, William Andrew Publishing, Norwich (2002).Suche in Google Scholar
[6] M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman, K.J. Hemker: Phil Mag A 80 (2000) 1017.10.1080/01418610008212096Suche in Google Scholar
[7] B. Cai, Q.P. Kong, L. Lu, K. Lu: Mat. Sci. Eng. A 286 (2000) 188.10.1016/S0921-5093(00)00633-XSuche in Google Scholar
[8] Y. Champion, C. Langlois, S. Gueren-Mailly, P. Langlois, J-L. Bonnentien, M.J. Hytch: Science 300 (2003) 310.10.1126/science.1081042Suche in Google Scholar
[9] D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev: App. Phys. Lett. 79 (2001) 611.10.1063/1.1384000Suche in Google Scholar
[10] M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, X. Cheng: Published online April 24, 2003; 10.1126/science.1083727 (Science Express Reports)Suche in Google Scholar
[11] J. Markmann, P. Bunzel, H. Roesner, K.W. Liu, K.A. Padmanabhan, R. Birringer, H. Gleiter, J. Weissmueller: Scripta Mater. (2003) in press.Suche in Google Scholar
[12] P.G. Sanders, C.J. Youngdahl, J.R. Weertman: Mater. Sci. Eng. A 234–236 (1997) 77.10.1016/S0921-5093(97)00185-8Suche in Google Scholar
[13] Y.M. Wang, E. Ma, M.W. Chen: Appl. Phys. Lett. 80 (2002) 2395.10.1063/1.1465528Suche in Google Scholar
[14] S. Van Petegem, F. Dalla Torre, D. Segers, H. van Swygenhoven: Scripta Mater. 48 (2003) 17.10.1016/S1359-6462(02)00322-6Suche in Google Scholar
[15] R.C. Hugo, H. Kung, J.R. Weertman, R. Mitra, J.A. Knapp, D.M. Follstaedt: Acta Mater. 51 (2003) 1937.10.1016/S1359-6454(02)00599-2Suche in Google Scholar
[16] K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang: Acta Mater. 51 (2003) 387.10.1016/S1359-6454(02)00421-4Suche in Google Scholar
[17] A. Hasnaoui, H. van Swygenhoven, P.M. Derlet: Science 300 (2003) 1550 .10.1126/science.1084284Suche in Google Scholar
[18] H. van Swygenhoven: Science 296 (2002) 66.10.1126/science.1071040Suche in Google Scholar
[19] H. van Swygenhoven, P.M. Derlet: Phys. Rev. B 64 (2001) 224105.10.1103/PhysRevB.64.224105Suche in Google Scholar
[20] A. Hasnaoui, H. van Swygenhoven, P.M. Derlet: Phys. Rev. B 66 (2002) 184112.10.1103/PhysRevB.66.184112Suche in Google Scholar
[21] H. van Swygenhoven, P.M. Derlet, A. Hasnaoui: Phys. Rev. B 66 (2002) 024101.10.1103/PhysRevB.66.024101Suche in Google Scholar
[22] P.M. Derlet, H. van Swygenhoven, A. Hasnaoui: Phil. Mag. A (2003) in press.Suche in Google Scholar
[23] V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter: Acta Mater 49 (2001) 2713.10.1016/S1359-6454(01)00167-7Suche in Google Scholar
[24] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter: Nature Materials 1 (2002) 1.10.1038/nmat721Suche in Google Scholar
[25] P.M. Derlet, H. van Swygenhoven: Scripta Mater. 47 (2002) 719.10.1016/S1359-6462(02)00182-3Suche in Google Scholar
[26] M. Parrinello, A. Rahman: J. Appl. Phys. 52 (1981) 7182.10.1063/1.328693Suche in Google Scholar
[27] F. Cleri, V. Rosato: Phys. Rev. B 48 (1993) 22.10.1103/PhysRevB.48.22Suche in Google Scholar
[28] H. van Swygenhoven, D. Farkas, A. Caro: Phys. Rev. B 62 (2000) 831.10.1103/PhysRevB.62.831Suche in Google Scholar
[29] P.M. Derlet, H. van Swygenhoven: Phys. Rev. B 67 (2002) 014202.10.1103/PhysRevB.67.014202Suche in Google Scholar
[30] D.J. Honeycutt, H.C. Andersen: J. Phys. Chem. 91 (1987) 4950.10.1021/j100303a014Suche in Google Scholar
[31] P.M. Derlet, A. Hasnaoui, H. van Swygenhoven: Scripta mater. (2003) in press.Suche in Google Scholar
[32] P. Keblinski, D. Wolf, S.R. Phillpot, H. Gleiter: Scripta Mater. 41 (1999) 631.10.1016/S1359-6462(99)00142-6Suche in Google Scholar
[33] J. Cormier, J.M. Rickman, T.J. Delph: J. Appl. Phys. 80 (2001) 99.10.1063/1.1328406Suche in Google Scholar
[34] D. Frenkel, B. Smit: Understanding molecular simulation: from algorithms to applications. San Diego (CA), Academic Press (2002).Suche in Google Scholar
[35] J.F. Lutsko: J. Appl. Phys. 64 (1988) 1152.10.1063/1.341877Suche in Google Scholar
[36] S.X. McFadden, A.V. Sergueeva, T. Kruml, J-L. Martin, A.K. Mukherjee: MRS Symposium Series Vol. 634 (2000) B1.3.10.1557/PROC-634-B1.3.1Suche in Google Scholar
[37] C.C. Koch, D.G. Morris, K. Lu, A. Innoue: MRS Bull. 24 (1999) 54.10.1557/S0883769400051551Suche in Google Scholar
[38] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog. Mater. Sci. 45 (2000) 103.10.1016/S0079-6425(99)00007-9Suche in Google Scholar
[39] D. Feichtinger, P.M. Derlet, H. van Swygenhoven: Phys. Rev. B 67 (2003) 024113.10.1103/PhysRevB.67.024113Suche in Google Scholar
[40] F. Dalla Torre, H. van Swygenhoven, M. Victoria: Acta Mater. 50 (2002) 3957.10.1016/S1359-6454(02)00198-2Suche in Google Scholar
© 2003 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events
Artikel in diesem Heft
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events