Home Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
Article
Licensed
Unlicensed Requires Authentication

Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi

  • E. Hornbogen and A. Heckmann EMAIL logo
Published/Copyright: February 7, 2022
Become an author with De Gruyter Brill

Abstract

Fatigue is due to accumulation of undesired defects by repeated loading cycles. Classical fatigue leads to the formation of localised strain and nucleation and propagation of cracks. In shape memory alloys, there are additional fatigue phenomena: 1. Thermal cycling plays a role mainly for the two-way effect; 2. Pseudo-elastic fatigue can precede classical fatigue. Pseudo-elastic fatigue consists in deterioration of the hysteresis and consequently the loss of damping ability and transformability. It is related to the localisation of the martensitic transformation reaction.

Abstract

Ermüdung entsteht durch Akkumulation von unerwünschten Defekten, bei wiederholten Belastungszyklen. Klassische Ermüdung führt zur Bildung von lokalisierter Deformation und zu Bildung und Wachstum von Rissen.

In Formgedächtnislegierungen treten zusätzliche Ermüdungsphänomene auf. 1. Thermische Ermüdung spielt eine Rolle hauptsächlich für den Zweiwegeffekt. 2. Pseudoelastische Ermüdung kann der klassischen Ermüdung vorausgehen. Pseudo-elastische Ermüdung besteht in Verringerung der Hysterese und folglich der Dämpfungsfähigkeit und des umwandelnden Volumenanteils. Dies steht in Beziehung zur Lokalisierung der martensitischen Umwandlungsreaktion


Dedicated to Professor Dr. Dr. h. c. Herbert Gleiter on the occasion of his 65th birthday.

A. Heckmann Institute of Materials, IA 1/44 Ruhr-University Bochum Universitätsstr. 150 D-44801 Bochum, Germany Tel.: +49 234 32 25910 Fax.: +49 234 32 14235

  1. Thanks are due to the DFG (German science foundation) for supporting the work of the SFB 459.

References

[1] H. Gleiter, E. Hornbogen: Mater. Sci. Eng. 2 (1967) 285.10.1016/0025-5416(68)90047-5Search in Google Scholar

[2] H. Gleiter, E. Hornbogen, G. Baro: Acta Metall. 16 (1968) 1053.10.1016/0001-6160(68)90094-1Search in Google Scholar

[3] H. Mughrabi: Proc. 4. Risø Symp. (1983) 65.Search in Google Scholar

[4] E. Hornbogen, K.H. Zum Gahr: Metallography 8 (1975) 181.10.1016/0026-0800(75)90038-5Search in Google Scholar

[5] A.H. Cottrell: “Discontinous yielding” in: Proc. Conf. on The Relation between the Structure and Mechanical Properties of Metals, Middlesex, U. K. (1963) 16.Search in Google Scholar

[6] J.A. Shaw, S. Kyriakides: Acta Mater. 45 (1997) 683.10.1016/S1359-6454(96)00189-9Search in Google Scholar

[7] A. Heckmann, E. Hornbogen: Mater Sci. Forum. 394–395 (2002) 325.10.4028/www.scientific.net/MSF.394-395.325Search in Google Scholar

[8] E. Hornbogen, A. Heckmann: Materwiss. Werkstofft. 34 (2003) 464.10.1002/mawe.200390094Search in Google Scholar

Received: 2003-04-28
Published Online: 2022-02-07

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Articles/Aufsätze
  3. From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
  4. Interface stress in nanocrystalline materials
  5. Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
  6. Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
  7. Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
  8. Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
  9. Nanoceramics by chemical vapour synthesis
  10. Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
  11. Simulations of the inert gas condensation processes
  12. Unconventional deformation mechanism in nanocrystalline metals?
  13. Alloying reactions in nanostructured multilayers during intense deformation
  14. Impact of grain boundary character on grain boundary kinetics
  15. Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
  16. Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
  17. Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
  18. New materials from non-intuitive composite effects
  19. On the line defects associated with grain boundary junctions
  20. Young’s modulus in nanostructured metals
  21. The kinetics of phase formation in an ultra-thin nanoscale layer
  22. Notifications/Mitteilungen
  23. Personal/Personelles
  24. News
  25. DGM Events
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0194/html
Scroll to top button