Abstract
Based on a generalization of a capillary equation for solids, we develop a method for measuring the absolute value of grain-boundary stress in polycrystalline samples having a large interface-to-volume ratio. The grain-boundary stress in nanocrystalline Pd is calculated from X-ray diffraction measurements of the average grain size and the residual-strain-free lattice spacings, yielding a value of 1.2 ± 0.1 N /m. The random distribution of crystallite orientations in the sample in conjunction with calorimetric data for the area-averaged interfacial energy and knowledge of the grain-boundary misorientation distribution function suggest that this value is characteristic of random high-angle grain boundaries in Pd.
-
The authors are obliged to C. E. Krill, A. Tschöpe and J. Weissmüller for critical readings of the manuscript and helpful suggestions. We are indebted to Prof. H. Ruppersberg for his guidance in setting up the stress measurements and in interpreting the residual-strain data. This research was supported by the Deutsche Forschungsgemeinschaft (Grant Bi 385/13, Sonderforschungsbereich 277).
References
[1] W. Pompe, M. Bobeth: Current Opinion in Solid State & Materials Science 3 (1998) 269.10.1016/S1359-0286(98)80102-2Search in Google Scholar
[2] J.W. Gibbs: Trans. Conn. Acad. III (1878).Search in Google Scholar
[3] J.W. Gibbs: Scientific Papers of Gibbs, J. Williard, Vol. 1, Dover Publications, Inc., New York (1961).Search in Google Scholar
[4] C. Herring: Structure and Properties of Solid Surfaces, University of Chicago, Chicago (1953).Search in Google Scholar
[5] R. Shuttleworth: Proc. Phys. Soc. A 63 (1950) 444.10.1088/0370-1298/63/5/302Search in Google Scholar
[6] J.W. Cahn, in:W.C. Johnson, J.M. Blakely (Eds.), Interfacial Segregation, ASM, Metals Park, OH (1977) 3.Search in Google Scholar
[7] J.W. Cahn: Acta metall. 28 (1980) 1333.10.1016/0001-6160(80)90002-4Search in Google Scholar
[8] M.E. Gurtin, J. Weissmüller, F. Larché: Phil. Mag. A 78 (1998) 1093.10.1080/01418619808239977Search in Google Scholar
[9] H. Ibach: Surf. Sci. Reports 29 (1997) 193.10.1016/S0167-5729(97)00010-1Search in Google Scholar
[10] H.S. Nalwa: Handbook of Nanostructured Materials and Nanotechnology, Academic Press, London (2000).Search in Google Scholar
[11] F. Spaepen: Acta Mater. 48 (2000) 1899.10.1016/S1359-6454(99)00286-4Search in Google Scholar
[12] R.C. Cammarata, K. Sieradzki: Ann. Rev. Mater. Sci. 24 (1994) 215.10.1146/annurev.ms.24.080194.001243Search in Google Scholar
[13] D. Josell: Acta metall. mater. 42 (1994) 1031.10.1016/0956-7151(94)90297-6Search in Google Scholar
[14] J.A. Ruud, A. Witvrouw, F. Spaepen: J. Appl. Phys. 74 (1993) 2517.10.1063/1.354692Search in Google Scholar
[15] J. Weissmüller, J.W. Cahn: Acta mater. 45 (1997) 1899.10.1016/S1359-6454(96)00314-XSearch in Google Scholar
[16] K.O. Schweitz, H. Geisler, J. Chevallier, J. Bøttiger, R. Feidenhans’l: Mater. Res. Soc. Symp. Proc. 505 (1998) 559.10.1557/PROC-505-559Search in Google Scholar
[17] A.L. Shull, F. Spaepen: J. Appl. Phys. 80 (1996) 6243.10.1063/1.363701Search in Google Scholar
[18] B.M. Clemens, W.D. Nix, V. Ramaswamy: J. Appl. Phys. 87 (2000) 2816.10.1063/1.372261Search in Google Scholar
[19] D. Josell, J.E. Bonevich, I. Shao, R.C. Cammarata: J. Mater. Res. 14 (1999) 4358.10.1557/JMR.1999.0590Search in Google Scholar
[20] P. Gumbsch, M.S. Daw: Phys. Rev. B 44 (1991) 3934.10.1103/PhysRevB.44.3934Search in Google Scholar PubMed
[21] J. Weissmüller, C. Lemier: Phys. Rev. Lett. 82 (1999) 213.10.1103/PhysRevLett.82.213Search in Google Scholar
[22] R. Birringer, C.E. Krill, M. Klingel: Phil Mag. Lett. 72 (1995) 71.10.1080/09500839508241616Search in Google Scholar
[23] S. Timoshenko, J.N. Goodier: Theory of Elasticity, McGraw Hill, New York (1951).Search in Google Scholar
[24] I. Young: Phil. Trans. Royal Soc. (London) 95 (1805) 65.10.1098/rstl.1805.0005Search in Google Scholar
[25] P.S. Laplace: Mechanique Céleste 10, Supp. 1 (1806).Search in Google Scholar
[26] C.E. Krill, R. Birringer: Phil. Mag. A 77 (1998) 621.10.1080/01418619808224072Search in Google Scholar
[27] W. Kreher, W. Pompe: Internal Stresses in Heterogeneous Solids, AkademieVerlag Berlin, Berlin (1989).10.1515/9783112707135Search in Google Scholar
[28] S. Nemat-Nasser,M. Hori: Micromechanics, Overall Properties of Heterogeneous Materials, Elsevier Science Publishers, Amsterdam (1993).Search in Google Scholar
[29] I. Alber, J.L. Bassan, M. Kantha, V. Vitek, G.J. Wang: Philos. Trans. R. Soc. A 339 (1992) 555.Search in Google Scholar
[30] T. Mura: Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, The Hague, Netherlands (1982).10.1007/978-94-011-9306-1Search in Google Scholar
[31] I.C. Noyan, J.B. Cohen: Residual Stress, Springer-Verlag, New York (1987).10.1007/978-1-4613-9570-6Search in Google Scholar
[32] H. Ruppersberg, I. Detemple, J. Krier: Phys. Stat. Sol. (a) 116 (1989) 681.10.1002/pssa.2211160226Search in Google Scholar
[33] F. Bollenrath, V. Hauk, E.H. Müller: Z. Metallkde. 58 (1967) 76.10.1515/ijmr-1967-580115Search in Google Scholar
[34] A. Tschöpe, R. Birringer, H. Gleiter: J. Appl. Phys. 71 (1992) 5391.10.1063/1.350560Search in Google Scholar
[35] B.E. Warren: X-Ray Diffraction, Dover Publications, New York (1990).Search in Google Scholar
[36] R. Delhez, T.H. de Keijser, E.J. Mittemeijer: Accuracy in Powder Diffraction, National Bureau of Standards Special Publication No. 567, S. Block and C.R. Hubbard (Eds.),Washington, DC: National Bureau of Standards (1980) 213.Search in Google Scholar
[37] C.E. K. III, L. Helfen, D. Michels, H. Natter, A. Fitch, O. Masson, R. Birringer: Phys. Rev. Lett. 86 (2001) 842.10.1103/PhysRevLett.86.842Search in Google Scholar
[38] A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, D.T. Wu: Acta mater. 47 (1999) 2143.10.1016/S1359-6454(99)00079-8Search in Google Scholar
[39] J.B. Nelson, D.P. Riley: Proc. Phys. Soc. 57 (1945) 160.10.1088/0959-5309/57/3/302Search in Google Scholar
[40] C.N.J. Wagner, in: J.B. Cohen (Ed.), Local atomic Arrangements studied by X-ray Diffraction, Gordon Breach, New York (1966) 219.Search in Google Scholar
[41] M. Paterson: J. Appl. Phys. 23 (1952) 805.10.1063/1.1702312Search in Google Scholar
[42] C.A. Johnson: Acta Cryst. 16 (1963) 490.10.1107/S0365110X63001341Search in Google Scholar
[43] C.N.J. Wagner, A.S. Tetelman, H.M. Otte: J. Appl. Phys. 33 (1962) 3080.10.1063/1.1728571Search in Google Scholar
[44] B.E. Warren: J. Appl. Phys. 34 (1963) 1973.10.1063/1.1729721Search in Google Scholar
[45] L. Velterop, R. Delhez, T.H. de Keijser, E.J. Mittemeijer, D. Reef-man: J. Appl. Cryst. 33 (2000) 296.10.1107/S0021889800000133Search in Google Scholar
[46] E. Kröner: Statistical Continuum Mechanics, Springer-Verlag Wien –New York, Udine (1972).10.1007/978-3-7091-2862-6Search in Google Scholar
[47] R. Birringer, M. Hoffmann, P. Zimmer: Phys. Rev. Lett. 88 (2002) 206104.10.1103/PhysRevLett.88.206104Search in Google Scholar
[48] JCPDS file no. 46 –1043, International Centre for Diffration Data, Newtown Square, PA.Search in Google Scholar
[49] J.A. Eastman, M.R. Fitzsimmons, L.J. Thompson: Phil. Mag. B 66 (1992) 667.10.1080/13642819208207667Search in Google Scholar
[50] C. Goux: Can. Metall. Q. 13 (1974) 9.10.1179/cmq.1974.13.1.9Search in Google Scholar
[51] D. Wolf, S. Yip: Materials Interfaces: atomic-level structure and properties, Chapman and Hall, London (1992).Search in Google Scholar
[52] A.P. Sutton, R.W. Balluffi: Interfaces in Crystalline Materials, Clarendon Press, Oxford (1995).Search in Google Scholar
[53] J.K. Mackenzie: Acta metall. 12 (1964) 223.10.1016/0001-6160(64)90191-9Search in Google Scholar
[54] M. Miodownik, A.W. Godfrey, E.A. Holm, D.H. Hughes: Acta mater. 47 (1999) 2661.10.1016/S1359-6454(99)00137-8Search in Google Scholar
[55] H.J. Bunge: Texture Analysis in Materials Science, Butterworths, London (1982).10.1016/B978-0-408-10642-9.50010-6Search in Google Scholar
[56] H.E. Schaefer, K. Reimann, W. Straub, F. Phillipp, H. Tanimoto, K. Brossmann, R. Wuerschum: Mater. Sci. Eng. A 286 (2000) 24.10.1016/S0921-5093(00)00659-6Search in Google Scholar
[57] J.E. Hilliard: Transactions AIME 224 (1963) 1201.Search in Google Scholar
[58] A. Tschöpe, R. Birringer: Acta Metall. Mater. 41 (1993) 2791.10.1016/0956-7151(93)90147-KSearch in Google Scholar
[59] A.R. Miedema: Z. Metallkde. 69 (1978) 287.10.1515/ijmr-1978-690501Search in Google Scholar
[60] L. E. Murr, Interfacial phenomena in metals and alloys, Addison-Wesley, Reading, Ma (1975).Search in Google Scholar
[61] J. Weissmüller: private communication (2001).Search in Google Scholar
[62] E. Kröner: Z. Physik 151 (1958) 504.10.1007/BF01337948Search in Google Scholar
[63] J.D. Eshelby: Proc. Roy. Soc. A 241 (1957) 376.10.1098/rspa.1957.0133Search in Google Scholar
© 2003 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events