Home Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
Article
Licensed
Unlicensed Requires Authentication

Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials

  • D. Wolf EMAIL logo , V. Yamakov , S. R. Phillpot and A. K. Mukherjee
Published/Copyright: February 7, 2022
Become an author with De Gruyter Brill

Abstract

It is widely accepted that for the very smallest grain sizes (typically below 20 – 30 nm), dislocations play no significant role in the deformation of nanocrystalline materials. However, the grain-boundary mechanisms responsible for the reported decrease in strength with decreasing grain size in this regime (the ‘inverse Hall–Petch effect’) remain unclear. Here, we demonstrate by molecular-dynamics simulation that, in the absence of both grain growth and any dislocations, nanocrystalline fcc metals deform via a mechanism involving an intricate interplay between grain-boundary sliding and grain-boundary diffusion. By quantitatively reproducing the well-known Coble-creep formula for coarse-grained materials, we show that the ‘inverse Hall–Petch effect’ arises from sliding-accommodated grain-boundary diffusion creep. Previous, apparently contradictory, suggestions that GB sliding, on the one hand, or GB-diffusion creep, on the other, are responsible for this behavior can thus be reconciled as originating from one and the same deformation mechanism. We discuss the reasons why we believe that these simulations also capture the room-temperature deformation behavior of nanocrystalline fcc metals in the absence of dislocation nucleation and microcracking.


Dedicated to Prof. Dr. Dr. h. c. Herbert Gleiter on the occasion of his 65th birthday

Dieter Wolf Materials Science Division, Bldg. 212 Argonne National Laboratory Argonne, IL 60439, USA Tel.: +01 630 252 5205 Fax: +01 630 252 4289

  1. V.Y., D.W. and S.R.P. are supported by the US Department of Energy, BES-Materials Science under contract W-31-109-Eng-38. V.Y. is also grateful for support from the DOE/BES-MS Computational Materials Science Network (CMSN). A.K.M. acknowledges support from NSF-DMR. We are grateful for grants of computer time on the Cray-T3E at the John-von-Neumann-Institute for Computing in Jülich, Germany, and on the Chiba City Linux cluster at ANL.

References

[1] J. Karch, R. Birringer, H. Gleiter: Nature 330 (1987) 556.10.1038/330556a0Search in Google Scholar

[2] See, e. g., C.C. Koch, C. Suryanarayana, in: J.C.M. Li (Ed.), Microstructure and Properties of Materials, Vol. 2, Chapter 6, World Scientific Publishing, Singapore (2000) 380.Search in Google Scholar

[3] S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee: Nature 398 (1999) 684.10.1038/19486Search in Google Scholar

[4] L. Lu, M.L. Sui, K. Lu: Science 287 (2001) 1463.10.1126/science.287.5457.1463Search in Google Scholar

[5] B.N. Kim, K. Hiraga, K. Morita, Y. Sakka: Nature 413 (2001) 288.10.1038/35095025Search in Google Scholar

[6] T.G. Nieh, J. Wadsworth: Scripta metall. mater. 25 (1991) 955.10.1016/0956-716X(91)90256-ZSearch in Google Scholar

[7] R.W. Siegel: Mat. Sci. Forum 235–238 (1997) 851.10.4028/www.scientific.net/MSF.235-238.851Search in Google Scholar

[8] D.G. Morris, M.A. Morris: Mat. Sci. Forum 235–238 (1997) 861.10.4028/www.scientific.net/MSF.235-238.861Search in Google Scholar

[9] See, e. g., S. Yip: Nature 391 (1998) 532.10.1038/35254Search in Google Scholar

[10] A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter: Scripta metall. 23 (1989) 1679.10.1016/0036-9748(89)90342-6Search in Google Scholar

[11] V.Y. Gertsman, M. Hoffmann, H. Gleiter, R. Birringer: Acta metall. mater. 42 (1994) 3539.10.1016/0956-7151(94)90486-3Search in Google Scholar

[12] R.A. Masamura, P.M. Hazzledine, C.S. Pande: Acta mater. 46 (1998) 4527.10.1016/S1359-6454(98)00150-5Search in Google Scholar

[13] V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter: Acta mater. 49 (2001) 2713.10.1016/S1359-6454(01)00167-7Search in Google Scholar

[14] J. Schiotz, F.D. DiTolla, K.W. Jacobsen: Nature 391 (1998) 561.10.1038/35328Search in Google Scholar

[15] J. Schiotz, T. Vegge, F.D. DiTolla, K.W. Jacobsen, Phys. Rev. B 60 (1999) 11971.10.1103/PhysRevB.60.11971Search in Google Scholar

[16] H. van Swygenhoven, M. Spaczer, A. Caro, D. Farkas: Phys. Rev. B 60 (1999) 22.10.1103/PhysRevB.60.22Search in Google Scholar

[17] H. van Swygenhoven, M. Spaczer, A. Caro: Acta mater. 47 (1999) 3117.10.1016/S1359-6454(99)00109-3Search in Google Scholar

[18] H. van Swygenhoven, A. Caro: Appl. Phys. Lett. 71 (1997) 1652.10.1063/1.119785Search in Google Scholar

[19] H. van Swygenhoven, A. Caro: Phys. Rev. B 58 (1998) 11246.10.1103/PhysRevB.58.11246Search in Google Scholar

[20] H. van Swygenhoven, P. Derlet: Phys. Rev. B 64 (2001) 224105.10.1103/PhysRevB.64.224105Search in Google Scholar

[21] P. Keblinski, D. Wolf, H. Gleiter: Interface Science 6 (1998) 205.10.1023/A:1008664218857Search in Google Scholar

[22] R.L. Coble: J. Appl. Phys. 34 (1963) 1697.10.1063/1.1702656Search in Google Scholar

[23] R. Raj, M.F. Ashby: Metall. Trans 2 (1971) 1113.10.1007/BF02664244Search in Google Scholar

[24] I.M. Lifshitz: Soviet Phys. JETP 17 (1963) 909.Search in Google Scholar

[25] T.G. Langdon: Mater. Sci. Eng. A 283 (2000) 266.10.1016/S0921-5093(00)00624-9Search in Google Scholar

[26] V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter: Acta mater. 50 (2002) 61.10.1016/S1359-6454(01)00329-9Search in Google Scholar

[27] P. Keblinski, D. Wolf, S.R. Phillpot, H. Gleiter: Scripta mater. 41 (1999) 631.10.1016/S1359-6462(99)00142-6Search in Google Scholar

[28] S.M. Foiles, J.B. Adams: Phys. Rev. B 40 (1986) 5909.10.1103/PhysRevB.40.5909Search in Google Scholar

[29] P. Keblinski, D. Wolf, S.R. Phillpot, H. Gleiter: Phil. Mag. A 79 (1999) 2735.10.1080/01418619908212021Search in Google Scholar

[30] See, for example, W.D. Kingery, H.K. Bowen, D.R. Uhlmann: Introduction to Ceramics, 2nd Edition, John Wiley & Sons, New York (1976) 739.Search in Google Scholar

[31] W.R. Cannon: Phil. Mag. 25 (1972) 1489.10.1080/14786437208223868Search in Google Scholar

[32] R.N. Stevens: Phil. Mag. 23 (1971) 265.10.1080/14786437108216383Search in Google Scholar

[33] W.A. Rachinger: J. Inst. Metals 81 (1952 –1953) 33.Search in Google Scholar

[34] M.F. Ashby, R.A. Verrall: Acta metall. 21 (1973)10.1016/0001-6160(73)90057-6Search in Google Scholar

[35] R.C. Gifkins: Metall. Trans. 7A (1976) 1225.10.1007/BF02656607Search in Google Scholar

Received: 2003-05-02
Published Online: 2022-02-07

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Articles/Aufsätze
  3. From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
  4. Interface stress in nanocrystalline materials
  5. Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
  6. Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
  7. Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
  8. Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
  9. Nanoceramics by chemical vapour synthesis
  10. Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
  11. Simulations of the inert gas condensation processes
  12. Unconventional deformation mechanism in nanocrystalline metals?
  13. Alloying reactions in nanostructured multilayers during intense deformation
  14. Impact of grain boundary character on grain boundary kinetics
  15. Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
  16. Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
  17. Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
  18. New materials from non-intuitive composite effects
  19. On the line defects associated with grain boundary junctions
  20. Young’s modulus in nanostructured metals
  21. The kinetics of phase formation in an ultra-thin nanoscale layer
  22. Notifications/Mitteilungen
  23. Personal/Personelles
  24. News
  25. DGM Events
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0199/html
Scroll to top button