Home Impact of grain boundary character on grain boundary kinetics
Article
Licensed
Unlicensed Requires Authentication

Impact of grain boundary character on grain boundary kinetics

  • D. A. Molodov EMAIL logo , L. S. Shvindlerman and G. Gottstein
Published/Copyright: February 7, 2022
Become an author with De Gruyter Brill

Abstract

The current research on grain boundary dynamics in metals is reviewed. The boundary dynamics, i. e., the boundary reaction to applied forces, is strongly dependent on the grain boundary character, which is commonly reduced to the orientation relationship between adjacent grains and impurity segregation at the boundary. The misorientation dependence of the motion of specific capillary driven grain boundaries, the effect of inclination on the mobility of planar boundaries and the dislocation absorption by moving boundaries are considered. The role of segregation behaviour and boundary crystallography for the orientation dependence of boundary mobility is addressed. The compensation effect for the motion of structurally different grain boundaries is discussed.


Priv.-Doz. Dr. rer. nat. Dmitri A. Molodov Institut für Metallkunde und Metallphysik, RWTH Aachen D-52056 Aachen, Germany Tel.: +49 241 80 2 6873 Fax: +49 80 2 2301

Dedicated to Professor Dr. Dr. h. c. Herbert Gleiter on the occasion of his 65th birthday


  1. The authors express their gratitude to the Deutsche Forschungsgemeinschaft for financial support.

References

[1] H. Gleiter, B. Chalmers: High-Angle Grain Boundaries, Progress in Materials Science, Vol. 16, Pergamon Press (1972).Search in Google Scholar

[2] U. Czubayko, D.A. Molodov, B.-C. Petersen, G. Gottstein, L.S. Shvindlerman: Meas. Sci. Technol. 6 (1995) 947.10.1088/0957-0233/6/7/014Search in Google Scholar

[3] Y. Huang, F.J. Humphreys: Acta Mater. 47 (1999) 2259.10.1016/S1359-6454(99)00062-2Search in Google Scholar

[4] J.W. Rutter, K.T. Aust: Acta Metall. 13 (1965) 181.10.1016/0001-6160(65)90194-XSearch in Google Scholar

[5] V. Yu. Aristov, V.L. Mirochnik, L.S. Shvindlerman: Sov. Phys. Solid State 18 (1976) 137.Search in Google Scholar

[6] V.G. Sursaeva, A.V. Andreeva, Ch.V. Kopezkii, L.S. Shvindlerman: Phys. met. metall. 41 (1976) 98.Search in Google Scholar

[7] D.A. Molodov, B.B. Straumal, L.S. Shvindlerman: Scripta Metall. 18 (1984) 207.10.1016/0036-9748(84)90509-XSearch in Google Scholar

[8] G. Ibe, K. Lücke, in: Recrystallization, Grain Growth and Textures, H. Margolin (Ed.), ASM, Metals Park, Ohio (1966) 434.Search in Google Scholar

[9] G. Ibe, W. Dietz, A.-C. Fraker, K. Lücke: Z. Metallkd. 6 (1970) 498.10.1515/ijmr-1970-610704Search in Google Scholar

[10] G. Ibe, K. Lücke: Texture 1 (1972) 87.10.1155/TSM.1.87Search in Google Scholar

[11] D.A. Molodov, U. Czubayko, G. Gottstein, L.S. Shvindlerman: Scripta Metall. Mater. 32 (1995) 529.10.1016/0956-716X(95)90832-5Search in Google Scholar

[12] D.A. Molodov, U. Czubayko, G. Gottstein, L.S. Shvindlerman: Acta Mater. 46 (1998) 553.10.1016/S1359-6454(97)00277-2Search in Google Scholar

[13] V. Ivanov, D.A. Molodov, L.S. Shvindlerman, G. Gottstein: to be published.Search in Google Scholar

[14] M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, G. Gottstein: Acta Mater. 47 (1999) 3901.10.1016/S1359-6454(99)00240-2Search in Google Scholar

[15] D.G. Brandon: Acta Metall 14 (1966) 1479.10.1016/0001-6160(66)90168-4Search in Google Scholar

[16] M. Winning, G. Gottstein, L.S. Shvindlerman: Acta Mater. 49 (2001) 211.10.1016/S1359-6454(00)00321-9Search in Google Scholar

[17] G. Gottstein, H.C. Murmann, G. Renner, C. Simpson, K. Lücke, in: Textures of Materials, G. Gottstein, K. Lücke (Eds.), Springer Verlag, Berlin (1978) 521.10.1007/978-3-642-81313-9_50Search in Google Scholar

[18] J.Ch. Verhasselt, G. Gottstein, D.A. Molodov, L.S. Shvindlerman: Acta Mater. 47 (1999) 88710.1016/S1359-6454(98)00398-XSearch in Google Scholar

[19] D.A. Molodov, G. Gottstein, F. Heringhaus, L.S. Shvindlerman: Scripta Mater. 37 (1997) 1207.10.1016/S1359-6462(97)00227-3Search in Google Scholar

[20] D.A. Molodov, G. Gottstein, F. Heringhaus, L.S. Shvindlerman: Acta Mater. 46 (1998) 5627.10.1016/S1359-6454(98)00258-4Search in Google Scholar

[21] G. Gottstein, D.A. Molodov, E. Rabkin, L.S. Shvindlerman, I. Shapiro: Interface Sci 10 (2002) 279.10.1023/A:1020829612891Search in Google Scholar

[22] M. Furtkamp, G. Gottstein, D.A. Molodov, V.N. Semenov, L.S. Shvindlerman: Acta Mater. 46 (1998) 4103.10.1016/S1359-6454(98)00105-0Search in Google Scholar

[23] G. Gottstein, L.S. Shvindlerman: Interface Sci 6 (1998) 267.10.1023/A:1008649619917Search in Google Scholar

[24] T. Surholt, D.A. Molodov, Chr. Herzig: Acta Mater. 46 (1998) 5345.10.1016/S1359-6454(98)00237-7Search in Google Scholar

[25] E.M. Fridman, Ch.V. Kopetskii, L.S. Shvindlerman: Z. Metallkd. 66 (1975) 533.10.1515/ijmr-1975-660908Search in Google Scholar

[26] K.T. Aust, J.W. Rutter: Trans. AIME 215 (1959) 119.Search in Google Scholar

[27] K.T. Aust, J.W. Rutter: Trans. AIME 215 (1959) 823.Search in Google Scholar

[28] D.A. Molodov, in: Migration of High Angle Grain Boundaries in Metals, Shaker Verlag, Aachen (1999).Search in Google Scholar

[29] S. Hoffmann, P. Lejcek: Interface Sci. 3 (1996) 241.10.1007/BF00194704Search in Google Scholar

[30] D.A. Molodov, P. Konijnenberg, W. Hu, G. Gottstein, L.S. Shvindlerman: Scripta Mater. 45 (2001) 229.10.1016/S1359-6462(01)01024-7Search in Google Scholar

Received: 2003-05-14
Published Online: 2022-02-07

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Articles/Aufsätze
  3. From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
  4. Interface stress in nanocrystalline materials
  5. Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
  6. Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
  7. Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
  8. Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
  9. Nanoceramics by chemical vapour synthesis
  10. Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
  11. Simulations of the inert gas condensation processes
  12. Unconventional deformation mechanism in nanocrystalline metals?
  13. Alloying reactions in nanostructured multilayers during intense deformation
  14. Impact of grain boundary character on grain boundary kinetics
  15. Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
  16. Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
  17. Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
  18. New materials from non-intuitive composite effects
  19. On the line defects associated with grain boundary junctions
  20. Young’s modulus in nanostructured metals
  21. The kinetics of phase formation in an ultra-thin nanoscale layer
  22. Notifications/Mitteilungen
  23. Personal/Personelles
  24. News
  25. DGM Events
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0203/html
Scroll to top button