Abstract
The current research on grain boundary dynamics in metals is reviewed. The boundary dynamics, i. e., the boundary reaction to applied forces, is strongly dependent on the grain boundary character, which is commonly reduced to the orientation relationship between adjacent grains and impurity segregation at the boundary. The misorientation dependence of the motion of specific capillary driven grain boundaries, the effect of inclination on the mobility of planar boundaries and the dislocation absorption by moving boundaries are considered. The role of segregation behaviour and boundary crystallography for the orientation dependence of boundary mobility is addressed. The compensation effect for the motion of structurally different grain boundaries is discussed.
The authors express their gratitude to the Deutsche Forschungsgemeinschaft for financial support.
References
[1] H. Gleiter, B. Chalmers: High-Angle Grain Boundaries, Progress in Materials Science, Vol. 16, Pergamon Press (1972).Search in Google Scholar
[2] U. Czubayko, D.A. Molodov, B.-C. Petersen, G. Gottstein, L.S. Shvindlerman: Meas. Sci. Technol. 6 (1995) 947.10.1088/0957-0233/6/7/014Search in Google Scholar
[3] Y. Huang, F.J. Humphreys: Acta Mater. 47 (1999) 2259.10.1016/S1359-6454(99)00062-2Search in Google Scholar
[4] J.W. Rutter, K.T. Aust: Acta Metall. 13 (1965) 181.10.1016/0001-6160(65)90194-XSearch in Google Scholar
[5] V. Yu. Aristov, V.L. Mirochnik, L.S. Shvindlerman: Sov. Phys. Solid State 18 (1976) 137.Search in Google Scholar
[6] V.G. Sursaeva, A.V. Andreeva, Ch.V. Kopezkii, L.S. Shvindlerman: Phys. met. metall. 41 (1976) 98.Search in Google Scholar
[7] D.A. Molodov, B.B. Straumal, L.S. Shvindlerman: Scripta Metall. 18 (1984) 207.10.1016/0036-9748(84)90509-XSearch in Google Scholar
[8] G. Ibe, K. Lücke, in: Recrystallization, Grain Growth and Textures, H. Margolin (Ed.), ASM, Metals Park, Ohio (1966) 434.Search in Google Scholar
[9] G. Ibe, W. Dietz, A.-C. Fraker, K. Lücke: Z. Metallkd. 6 (1970) 498.10.1515/ijmr-1970-610704Search in Google Scholar
[10] G. Ibe, K. Lücke: Texture 1 (1972) 87.10.1155/TSM.1.87Search in Google Scholar
[11] D.A. Molodov, U. Czubayko, G. Gottstein, L.S. Shvindlerman: Scripta Metall. Mater. 32 (1995) 529.10.1016/0956-716X(95)90832-5Search in Google Scholar
[12] D.A. Molodov, U. Czubayko, G. Gottstein, L.S. Shvindlerman: Acta Mater. 46 (1998) 553.10.1016/S1359-6454(97)00277-2Search in Google Scholar
[13] V. Ivanov, D.A. Molodov, L.S. Shvindlerman, G. Gottstein: to be published.Search in Google Scholar
[14] M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, G. Gottstein: Acta Mater. 47 (1999) 3901.10.1016/S1359-6454(99)00240-2Search in Google Scholar
[15] D.G. Brandon: Acta Metall 14 (1966) 1479.10.1016/0001-6160(66)90168-4Search in Google Scholar
[16] M. Winning, G. Gottstein, L.S. Shvindlerman: Acta Mater. 49 (2001) 211.10.1016/S1359-6454(00)00321-9Search in Google Scholar
[17] G. Gottstein, H.C. Murmann, G. Renner, C. Simpson, K. Lücke, in: Textures of Materials, G. Gottstein, K. Lücke (Eds.), Springer Verlag, Berlin (1978) 521.10.1007/978-3-642-81313-9_50Search in Google Scholar
[18] J.Ch. Verhasselt, G. Gottstein, D.A. Molodov, L.S. Shvindlerman: Acta Mater. 47 (1999) 88710.1016/S1359-6454(98)00398-XSearch in Google Scholar
[19] D.A. Molodov, G. Gottstein, F. Heringhaus, L.S. Shvindlerman: Scripta Mater. 37 (1997) 1207.10.1016/S1359-6462(97)00227-3Search in Google Scholar
[20] D.A. Molodov, G. Gottstein, F. Heringhaus, L.S. Shvindlerman: Acta Mater. 46 (1998) 5627.10.1016/S1359-6454(98)00258-4Search in Google Scholar
[21] G. Gottstein, D.A. Molodov, E. Rabkin, L.S. Shvindlerman, I. Shapiro: Interface Sci 10 (2002) 279.10.1023/A:1020829612891Search in Google Scholar
[22] M. Furtkamp, G. Gottstein, D.A. Molodov, V.N. Semenov, L.S. Shvindlerman: Acta Mater. 46 (1998) 4103.10.1016/S1359-6454(98)00105-0Search in Google Scholar
[23] G. Gottstein, L.S. Shvindlerman: Interface Sci 6 (1998) 267.10.1023/A:1008649619917Search in Google Scholar
[24] T. Surholt, D.A. Molodov, Chr. Herzig: Acta Mater. 46 (1998) 5345.10.1016/S1359-6454(98)00237-7Search in Google Scholar
[25] E.M. Fridman, Ch.V. Kopetskii, L.S. Shvindlerman: Z. Metallkd. 66 (1975) 533.10.1515/ijmr-1975-660908Search in Google Scholar
[26] K.T. Aust, J.W. Rutter: Trans. AIME 215 (1959) 119.Search in Google Scholar
[27] K.T. Aust, J.W. Rutter: Trans. AIME 215 (1959) 823.Search in Google Scholar
[28] D.A. Molodov, in: Migration of High Angle Grain Boundaries in Metals, Shaker Verlag, Aachen (1999).Search in Google Scholar
[29] S. Hoffmann, P. Lejcek: Interface Sci. 3 (1996) 241.10.1007/BF00194704Search in Google Scholar
[30] D.A. Molodov, P. Konijnenberg, W. Hu, G. Gottstein, L.S. Shvindlerman: Scripta Mater. 45 (2001) 229.10.1016/S1359-6462(01)01024-7Search in Google Scholar
© 2003 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events