Home New materials from non-intuitive composite effects
Article
Licensed
Unlicensed Requires Authentication

New materials from non-intuitive composite effects

  • Ce-Wen Nan EMAIL logo
Published/Copyright: February 7, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, we review in view of their potential but also from the aspect of being potentially the most interesting examples of the non-intuitive composite effects, which provides an impression of the dynamic evolution and the future opportunities of non-intuitive composite effects, with many promising applications.


Prof. Ce-Wen Nan Department of Materials Science and Engineering Tsinghua University, Beijing 100084, China Tel.: +86 10 6277 3587 Fax: +86 10 6277 1160

Dedicated to Professor Dr. Dr. h. c. Herbert Gleiter on the occasion of his 65th birthday


  1. It is a great honor for me to dedicate this paper to Professor H. Gleiter on the occasion of his 65th birthday. His continuous interest in nanomaterials has always been a strong motivation for our work. Many stimulating discussions with friends and colleagues are gratefully acknowledged. This work was supported by the Ministry of Science and Technology of China through 973-plan under grant 2002CB613303.

References

[1] M.C. Roco (Ed.): Nanotechnology Research Directions: IWGN Workshop Report, International Technology Research Institute, Washington D.C. (1999).10.21236/ADA418616Search in Google Scholar

[2] C.-W. Nan, Y. Lin: Key Eng. Mater. 224 (2002) 111; 228 (2002) 37.10.4028/www.scientific.net/KEM.228-229.37Search in Google Scholar

[3] C.-W. Nan: Prog. Mater. Sci. 37 (1993) 1.10.1016/0079-6425(93)90004-5Search in Google Scholar

[4] N. Setter, R.Waser: Acta Mater. 48 (2000) 151.10.1016/S1359-6454(99)00293-1Search in Google Scholar

[5] R.E. Newnham, D.P. Skinner, L.E. Cross: Mater. Res. Bull. 13 (1978) 525.10.1016/0025-5408(78)90161-7Search in Google Scholar

[6] C. Pecharroman, F. Esteban–Bategon, J.S. Moya: Adv. Mater. 13 (2001) 1541.10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-XSearch in Google Scholar

[7] J.J. Wu, D.S. McLachlan: Phys. Rev. B 58 (1998) 14880.10.1103/PhysRevB.58.14880Search in Google Scholar

[8] Z.M. Dang, Y. Shen, C.-W. Nan: Appl. Phys. Lett. 81 (2002) 4814.10.1063/1.1529085Search in Google Scholar

[9] C.F. Yang: Jpn. J. Appl. Phys. 35 (1996) 1806.10.1143/JJAP.35.1806Search in Google Scholar

[10] J. Wu, C.-W. Nan, Y. Lin, Y. Deng: Phys. Rev. Lett. 89 (2002) 217601.10.1103/PhysRevLett.89.217601Search in Google Scholar

[11] J.A. Chilton: GEC Rev. 6 (1999) 156.Search in Google Scholar

[12] C.-W. Nan, G.J. Weng: J. Appl. Phys. 88 (2000) 416.10.1063/1.373675Search in Google Scholar

[13] S.A. Solin, T. Thio, D.R. Hines, J.J. Heremans: Science 289 (2000) 1530.10.1126/science.289.5484.1530Search in Google Scholar PubMed

[14] J.P. Heremans, C.H. Thrush, D.T. Morelli: Phys. Rev. Lett. 86 (2001) 2098.10.1103/PhysRevLett.86.2098Search in Google Scholar PubMed

[15] Y.C. Wang, R.S. Lakes: J. Appl. Phys. 90 (2001) 6458.10.1063/1.1413947Search in Google Scholar

[16] F.J. DiSalvo: Science 285 (1999) 703.10.1126/science.285.5428.703Search in Google Scholar PubMed

[17] C.-W. Nan, J. Wu, J. Nan, X.S. Zhou, in: J. Zhang (Ed.), Proceedings of 20th International Conference on Thermoelectrics, IEEE, Piscat-away (2001) 18.Search in Google Scholar

[18] L.D. Hicks, M.S. Dresselhaus: Phys. Rev. B 47 (1993) 12727.10.1103/PhysRevB.47.12727Search in Google Scholar PubMed

[19] T. Koga, S.B. Cronin, M.S. Dresselhaus: Appl. Phys. Lett. 77 (2000) 1490.10.1063/1.1308271Search in Google Scholar

[20] J. Heremans, C.M. Thrush, D.T. Morelli, M. Wu: Phys. Rev. Lett. 88 (2002) 216801.10.1103/PhysRevLett.88.216801Search in Google Scholar PubMed

[21] J. van Suchtelen: Philips Res. Rep. 27 (1972) 28.Search in Google Scholar

[22] C.-W. Nan: Phys. Rev. B 50 (1994) 6082.10.1103/PhysRevB.50.6082Search in Google Scholar

[23] C.-W. Nan, M. Li, J.H. Huang: Phys. Rev. B 63 (2001) 144415.10.1103/PhysRevB.63.144415Search in Google Scholar

[24] C.-W. Nan, M. Li, X. Feng, S. Yu: Appl. Phys. Lett. 78 (2001) 2527.10.1063/1.1367293Search in Google Scholar

[25] J. Ryu, S. Priya, A.V. Carazo, K. Uchino, H.E. Kim: J. Am. Ceram. Soc. 84 (2001) 2905.10.1111/j.1151-2916.2001.tb01113.xSearch in Google Scholar

[26] K. Mori, M. Wuttig: Appl. Phys. Lett. 81 (2002) 100.10.1063/1.1491006Search in Google Scholar

[27] H. Gleiter, J.Weissmuller, O.Wollersheim, R. Würschum: Acta Mater. 49 (2001) 737.10.1016/S1359-6454(00)00221-4Search in Google Scholar

[28] E. Yablonovitch: Phys. Rev. Lett. 58 (1987) 2059; Science 289 (2000) 557.10.1103/PhysRevLett.58.2059Search in Google Scholar PubMed

[29] A. Zakhidov: Science 282 (1998) 897.10.1126/science.282.5390.897Search in Google Scholar PubMed

[30] D. Garcia–Pablos, M. Sigalas, F.R. Montero de Espinosa, M. Torres, M. Kafesaki, N. Garcia: Phys. Rev. Lett. 84 (2000) 4349.10.1103/PhysRevLett.84.4349Search in Google Scholar PubMed

[31] D. Caballero, J. Sanchez–Dehesa, C. Rubio, R. Martinez–Sala, J. V. Sanchez–Perez, F. Meseguer, J. Llinares: Phys. Rev. Lett. 60 (1999) R6316.10.1103/PhysRevE.60.R6316Search in Google Scholar

Received: 2003-05-27
Published Online: 2022-02-07

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Articles/Aufsätze
  3. From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
  4. Interface stress in nanocrystalline materials
  5. Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
  6. Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
  7. Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
  8. Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
  9. Nanoceramics by chemical vapour synthesis
  10. Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
  11. Simulations of the inert gas condensation processes
  12. Unconventional deformation mechanism in nanocrystalline metals?
  13. Alloying reactions in nanostructured multilayers during intense deformation
  14. Impact of grain boundary character on grain boundary kinetics
  15. Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
  16. Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
  17. Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
  18. New materials from non-intuitive composite effects
  19. On the line defects associated with grain boundary junctions
  20. Young’s modulus in nanostructured metals
  21. The kinetics of phase formation in an ultra-thin nanoscale layer
  22. Notifications/Mitteilungen
  23. Personal/Personelles
  24. News
  25. DGM Events
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0207/html
Scroll to top button