Abstract
In this paper, we review in view of their potential but also from the aspect of being potentially the most interesting examples of the non-intuitive composite effects, which provides an impression of the dynamic evolution and the future opportunities of non-intuitive composite effects, with many promising applications.
-
It is a great honor for me to dedicate this paper to Professor H. Gleiter on the occasion of his 65th birthday. His continuous interest in nanomaterials has always been a strong motivation for our work. Many stimulating discussions with friends and colleagues are gratefully acknowledged. This work was supported by the Ministry of Science and Technology of China through 973-plan under grant 2002CB613303.
References
[1] M.C. Roco (Ed.): Nanotechnology Research Directions: IWGN Workshop Report, International Technology Research Institute, Washington D.C. (1999).10.21236/ADA418616Search in Google Scholar
[2] C.-W. Nan, Y. Lin: Key Eng. Mater. 224 (2002) 111; 228 (2002) 37.10.4028/www.scientific.net/KEM.228-229.37Search in Google Scholar
[3] C.-W. Nan: Prog. Mater. Sci. 37 (1993) 1.10.1016/0079-6425(93)90004-5Search in Google Scholar
[4] N. Setter, R.Waser: Acta Mater. 48 (2000) 151.10.1016/S1359-6454(99)00293-1Search in Google Scholar
[5] R.E. Newnham, D.P. Skinner, L.E. Cross: Mater. Res. Bull. 13 (1978) 525.10.1016/0025-5408(78)90161-7Search in Google Scholar
[6] C. Pecharroman, F. Esteban–Bategon, J.S. Moya: Adv. Mater. 13 (2001) 1541.10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-XSearch in Google Scholar
[7] J.J. Wu, D.S. McLachlan: Phys. Rev. B 58 (1998) 14880.10.1103/PhysRevB.58.14880Search in Google Scholar
[8] Z.M. Dang, Y. Shen, C.-W. Nan: Appl. Phys. Lett. 81 (2002) 4814.10.1063/1.1529085Search in Google Scholar
[9] C.F. Yang: Jpn. J. Appl. Phys. 35 (1996) 1806.10.1143/JJAP.35.1806Search in Google Scholar
[10] J. Wu, C.-W. Nan, Y. Lin, Y. Deng: Phys. Rev. Lett. 89 (2002) 217601.10.1103/PhysRevLett.89.217601Search in Google Scholar
[11] J.A. Chilton: GEC Rev. 6 (1999) 156.Search in Google Scholar
[12] C.-W. Nan, G.J. Weng: J. Appl. Phys. 88 (2000) 416.10.1063/1.373675Search in Google Scholar
[13] S.A. Solin, T. Thio, D.R. Hines, J.J. Heremans: Science 289 (2000) 1530.10.1126/science.289.5484.1530Search in Google Scholar PubMed
[14] J.P. Heremans, C.H. Thrush, D.T. Morelli: Phys. Rev. Lett. 86 (2001) 2098.10.1103/PhysRevLett.86.2098Search in Google Scholar PubMed
[15] Y.C. Wang, R.S. Lakes: J. Appl. Phys. 90 (2001) 6458.10.1063/1.1413947Search in Google Scholar
[16] F.J. DiSalvo: Science 285 (1999) 703.10.1126/science.285.5428.703Search in Google Scholar PubMed
[17] C.-W. Nan, J. Wu, J. Nan, X.S. Zhou, in: J. Zhang (Ed.), Proceedings of 20th International Conference on Thermoelectrics, IEEE, Piscat-away (2001) 18.Search in Google Scholar
[18] L.D. Hicks, M.S. Dresselhaus: Phys. Rev. B 47 (1993) 12727.10.1103/PhysRevB.47.12727Search in Google Scholar PubMed
[19] T. Koga, S.B. Cronin, M.S. Dresselhaus: Appl. Phys. Lett. 77 (2000) 1490.10.1063/1.1308271Search in Google Scholar
[20] J. Heremans, C.M. Thrush, D.T. Morelli, M. Wu: Phys. Rev. Lett. 88 (2002) 216801.10.1103/PhysRevLett.88.216801Search in Google Scholar PubMed
[21] J. van Suchtelen: Philips Res. Rep. 27 (1972) 28.Search in Google Scholar
[22] C.-W. Nan: Phys. Rev. B 50 (1994) 6082.10.1103/PhysRevB.50.6082Search in Google Scholar
[23] C.-W. Nan, M. Li, J.H. Huang: Phys. Rev. B 63 (2001) 144415.10.1103/PhysRevB.63.144415Search in Google Scholar
[24] C.-W. Nan, M. Li, X. Feng, S. Yu: Appl. Phys. Lett. 78 (2001) 2527.10.1063/1.1367293Search in Google Scholar
[25] J. Ryu, S. Priya, A.V. Carazo, K. Uchino, H.E. Kim: J. Am. Ceram. Soc. 84 (2001) 2905.10.1111/j.1151-2916.2001.tb01113.xSearch in Google Scholar
[26] K. Mori, M. Wuttig: Appl. Phys. Lett. 81 (2002) 100.10.1063/1.1491006Search in Google Scholar
[27] H. Gleiter, J.Weissmuller, O.Wollersheim, R. Würschum: Acta Mater. 49 (2001) 737.10.1016/S1359-6454(00)00221-4Search in Google Scholar
[28] E. Yablonovitch: Phys. Rev. Lett. 58 (1987) 2059; Science 289 (2000) 557.10.1103/PhysRevLett.58.2059Search in Google Scholar PubMed
[29] A. Zakhidov: Science 282 (1998) 897.10.1126/science.282.5390.897Search in Google Scholar PubMed
[30] D. Garcia–Pablos, M. Sigalas, F.R. Montero de Espinosa, M. Torres, M. Kafesaki, N. Garcia: Phys. Rev. Lett. 84 (2000) 4349.10.1103/PhysRevLett.84.4349Search in Google Scholar PubMed
[31] D. Caballero, J. Sanchez–Dehesa, C. Rubio, R. Martinez–Sala, J. V. Sanchez–Perez, F. Meseguer, J. Llinares: Phys. Rev. Lett. 60 (1999) R6316.10.1103/PhysRevE.60.R6316Search in Google Scholar
© 2003 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events