Abstract
Mechanical attrition, mechanical alloying and other methods of extreme plastic deformation (high pressure torsion, equal channel angular pressing) have been developed as versatile alternatives to other physical and chemical processing routes in preparing nanophase materials. Here several examples are discussed including the deformation-induced nanophase formation in powder particles, in thin-foil sandwich structures and at the surface of alloys exposed to friction-induced wear, leading to the formation of nanocrystals and, in some cases, amorphous nanostructures. This opens exciting perspectives in preparing nanostructured materials with a number of different interface types in terms of structure (crystalline/crystalline, crystalline/amorphous) as well as atomic bond (metal/metal, metal/semiconductor, metal/ ceramic etc.). It is expected that the study of nanostructure formation by mechanical means in the future not only opens new processing routes for a variety of advanced nanophase materials but also improves the understanding of technologically relevant deformation processes on a nanoscopic level.
The financial support by the Deutsche Forschungsgemeinschaft (G. W. Leibniz programme, grant Fe 313/11-1) and the collaboration with W. L. Johnson, J. H. Perepezko, A. Sagel, R. Wunderlich and I. Manna are gratefully acknowledged.
References
[1] W. Lojkowski, H.-J. Fecht: Progr. Mater. Sci. 45 (2000) 339.10.1016/S0079-6425(99)00008-0Search in Google Scholar
[2] H.-J. Fecht: Phys. Rev. Lett. 65 (1990) 610.10.1103/PhysRevLett.65.610Search in Google Scholar
[3] H.-J. Fecht, H. Gleiter: Acta Metall. 33 (1985) 557.10.1016/0001-6160(85)90019-7Search in Google Scholar
[4] H. Gleiter, in: R.W. Cahn, P. Haasen (Eds.), Physical Metallurgy, Elsevier Amsterdam (1983) 650.Search in Google Scholar
[5] H. Kuwano, H. Ouyang, B. Fultz: Nanostr. Mater. 1 (1992) 143.10.1016/0965-9773(92)90067-8Search in Google Scholar
[6] H. Gleiter: Progr. Mater. Sci. 33 (1989) 223.10.1016/0079-6425(89)90001-7Search in Google Scholar
[7] H.-J. Fecht, in: Nanomaterial Synthesis, Properties and Applications, A. Edelstein, B. Camarata (Eds.), Institute of Physics Pub., Bristol, Philadelphia (1996) 89.Search in Google Scholar
[8] H.-J. Fecht, in: Nanostructured Materials, C.C. Koch (Ed.), Noyes Publications, New York (2002) 73.Search in Google Scholar
[9] C.C. Koch: Nanostr. Mater. 2 (1993) 109.10.1016/0965-9773(93)90016-5Search in Google Scholar
[10] A. Kehrel, C. Moelle, H.J. Fecht, in: Nanophase Materials, G.C. Hadjipanayis, R.W. Siegel (Eds.), Kluwer Acad. Publ. New York (1994) 287.10.1007/978-94-011-1076-1_34Search in Google Scholar
[11] C. Moelle, H.J. Fecht: Nanostr. Mater. 3 (1993) 93.10.1016/0965-9773(93)90067-LSearch in Google Scholar
[12] K. Yasuna, M. Terauchi, A. Otsuki, K.N. Ishihara, P.H. Shingu: J. Appl. Phys. 82 (1997) 2435.10.1063/1.366052Search in Google Scholar
[13] G.F. Zhou, H. Bakker: Phys. Rev. Lett. 72 (1994) 2290.10.1103/PhysRevLett.72.2290Search in Google Scholar PubMed
[14] W.E. Kuhn, I.L. Friedmann, W. Summers, A. Szegvari: ASM Metals Handbook, Vol. 7, Powder Metallurgy, Metals Park, OH (1985) 56.Search in Google Scholar
[15] H.-E. Schaefer, R. Würschum, T. Gessmann, G. Stöckl, P. Scharwaechter, W. Frank, R.Z. Valiev, H.-J. Fecht, C. Moelle: Nanostr. Mater. 6 (1995) 869.10.1016/0965-9773(95)00197-2Search in Google Scholar
[16] W.L. Johnson: Progr. Mater. Sci. 30 (1986) 81.10.1016/0079-6425(86)90005-8Search in Google Scholar
[17] G. Baumann, H.-J. Fecht, S. Liebelt: Wear 191 (1996) 133.10.1016/0043-1648(95)06733-7Search in Google Scholar
[18] H.-J. Fecht, E. Hellstern, Z. Fu, W. L. Johnson: Metall. Trans. A 21 (1990) 2333.10.1007/BF02646980Search in Google Scholar
[19] F. Miani, H.-J. Fecht: Int. J. Refract. Met. Hard Mater. 17 (1999) 133.10.1016/S0263-4368(98)00068-7Search in Google Scholar
[20] G.K. Williamson, W.H. Hall: Acta Metall. 1 (1953) 22.10.1016/0001-6160(53)90006-6Search in Google Scholar
[21] C.N.J. Wagner, M.S. Boldrick: J. Mater. Sci. Eng. A 133 (1991) 26.10.1016/0921-5093(91)90008-BSearch in Google Scholar
[22] A. Guinier: X-ray Diffraction, W.H. Freemand and Comp., San Francisco (1963)121.Search in Google Scholar
[23] H.-J. Fecht, C. Moelle: Mater. Res. Soc. Symposium Proceedings, Nanophase and Nanocomposite Materials II, 457 (1997) 113.10.1557/PROC-457-113Search in Google Scholar
[24] B.E. Warren, B.L. Averbach: J. Appl. Phys. 21 (1950) 595.10.1063/1.1699713Search in Google Scholar
[25] J. Friedel: Dislocations, Pergamon Press, Oxford (1964) 418.10.1016/B978-0-08-013523-6.50011-9Search in Google Scholar
[26] H.-J. Fecht, G. Han, Z. Fu, W.L. Johnson: J. Appl. Phys. 67 (1990) 1744.10.1063/1.345624Search in Google Scholar
[27] A. Sagel, R.K. Wunderlich, J.H. Perepezko, H.-J. Fecht: Appl. Phys. Lett. 70 (1997) 580.10.1063/1.118280Search in Google Scholar
[28] A. Sagel, N. Wanderka, R.K. Wunderlich, N. Schubert–Bischoff, H.-J. Fecht: Scripta Mater. 38 (1998) 163.10.1016/S1359-6462(97)00408-9Search in Google Scholar
[29] K. Samwer, H.-J. Fecht, W.L. Johnson, in: Glassy Metals III, Topics in Applied Physics, Vol. 72, Beck/Güntherodt, Springer Verlag Heidelberg (1994) 6.Search in Google Scholar
[30] M. Atzmon, K.M. Unruh, W.L. Johnson: J. Appl. Phys. 58 (1985) 3865.10.1063/1.335604Search in Google Scholar
[31] F. Bourdeaux, A.R. Yavari: J. Appl. Phys. 67 (1990) 2385.10.1063/1.345540Search in Google Scholar
[32] L.C. Chen, F. Spaepen: J. Appl. Phys. 69 (1991) 679.10.1063/1.347349Search in Google Scholar
[33] A. Tschöpe, R. Birringer, H. Gleiter: J. Appl. Phys. 71 (1992) 5391.10.1063/1.350560Search in Google Scholar
[34] D. Wolf: Phil. Mag. A 62 (1990) 447.10.1080/01418619008244790Search in Google Scholar
[35] F. Haessner, W. Hemminger: Z. Metallkd. 69 (1978) 553.10.1515/ijmr-1978-690901Search in Google Scholar
[36] D.J. Lloyd, D. Kenny: Scripta Metall. 12 (1978) 903.10.1016/0036-9748(78)90179-5Search in Google Scholar
[37] J.C. Grosskreutz, H. Mughrabi, in: Constitutive Equations in Plasticity, A.S. Argon (Ed.), MIT Press, Cambridge, Massachusetts (1971) 251.Search in Google Scholar
[38] J.J. Gilman: J. Appl. Phys. 46 (1975) 1625.10.1063/1.321764Search in Google Scholar
[39] P.E. Donovan, W.M. Stobbs: Acta Metall. 31 (1983) 1.10.1016/0001-6160(83)90057-3Search in Google Scholar
[40] M. Hatherly, A.S. Malin: Scripta Metall. 18 (1984) 449.10.1016/0036-9748(84)90419-8Search in Google Scholar
[41] R.B. Schwarz, W.L. Johnson: J. Less Comm. Met. 140 (1988), 1.10.1016/0022-5088(88)90361-XSearch in Google Scholar
[42] P.H. Shingu: Mater. Sci. Forum 302 (1992) 88.Search in Google Scholar
[43] H.-J. Fecht, Z. Fu,W.L. Johnson: Phys. Rev. Lett. 64 (1990) 1753.10.1103/PhysRevLett.64.1753Search in Google Scholar PubMed
[44] H.-J. Fecht, W.L. Johnson: Nature 334 (1988) 50.10.1038/334050a0Search in Google Scholar
[45] H.-J. Fecht: Nature 356 (1992).10.1038/356133a0Search in Google Scholar
[46] C.C. Koch, in: Materials Science and Technology, Vol. 15, R.W. Cahn, P. Haasen, E.J. Kramer (Eds.), VCH, Weinheim (1991) 193.Search in Google Scholar
[47] P. Bellon, R.S. Averback: Phys. Rev. Lett. 74 (1995) 1819.10.1103/PhysRevLett.74.1819Search in Google Scholar PubMed
[48] M. Atzmon, J.D. Verhoeven, E.D. Gibson, W.L. Johnson: Appl. Phys. Lett. 45 (1984) 1052.10.1063/1.95064Search in Google Scholar
[49] M. Atzmon, K.M. Unruh, W.L. Johnson: J. Appl. Phys. 58 (1985) 3865.10.1063/1.335604Search in Google Scholar
[50] F. Bourdeaux, A.R. Yavari: J. Appl. Phys. 67 (1990) 2385.10.1063/1.345540Search in Google Scholar
[51] K. Yasuna, M. Terauchi, A. Otsuki, K.N. Ishihara, P.H. Shingu: Appl. Phys. Lett. 82 (1997) 2435.10.1063/1.366052Search in Google Scholar
[52] A. Sagel, H. Sieber, H.-J. Fecht, J.H. Perepezko: Phil. Mag. Lett. 77 (1998) 109.10.1080/095008398178688Search in Google Scholar
[53] Y.V. Ivanisenko, G. Baumann, H.-J. Fecht, I.M. Safarov, A.V. Korznikov, R.Z. Valiev: Phys. Met. Metall. 83 (1997) 303.Search in Google Scholar
[54] H.-J. Fecht: Nanostr. Mater. 6 (1995) 33.10.1016/0965-9773(95)00027-5Search in Google Scholar
[55] S.K. Ganapathi, D.A. Rigney: Scripta Metall. 24 (1990) 1675.10.1016/0956-716X(90)90526-MSearch in Google Scholar
[56] F.D. Doyle, R.L. Aghan: Metall. Trans. B 6 (1975) 143.10.1007/BF02825688Search in Google Scholar
[57] R. Porat, S. Berger, A. Rosen: Mater. Sci. Forum, 225 –227 (1996) 629.10.4028/www.scientific.net/MSF.225-227.629Search in Google Scholar
[58] P. Humble, R.H.-J. Hannink: Nature 273 (1978) 37.10.1038/273037a0Search in Google Scholar
[59] G. Beilby: Aggregation and Flow of Solids, Macmillan London (1921).Search in Google Scholar
[60] P. Askenasy: Ph. D. Thesis, California Institute of Technology (1992).Search in Google Scholar
[61] G. Bürkle: Ph. D. Thesis, University of Ulm (2003).Search in Google Scholar
[62] W. Lojkowski, M. Djahanbakhsh, G. Bürkle, S. Gierlotka,W. Zielinski, H.-J. Fecht: J. Mater. Sci. Eng. A 303 (2001) 197.10.1016/S0921-5093(00)01947-XSearch in Google Scholar
[63] Yu. V. Milman, S.I. Chugunova, I.V. Goncharova, M. Djahanbakhsh, G. Bürkle, W. Lojkowski, H.-J. Fecht: J. Mater. Sci. Eng. A 303 (2001) 209.10.1016/S0921-5093(00)01948-1Search in Google Scholar
[64] Yu. Ivanisenko, R.Z. Valiev, H.-J. Fecht: Scripta Mater. (2003) in print.Search in Google Scholar
© 2003 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events