Abstract
Under intense deformation of metallic multilayer samples, a nanometer-scale layer thickness and grain size develops during repeated cold-rolling. Along with the evolution of the highly refined microstructure, a nanoscale interfacial alloying occurs that can result in an amorphization reaction. The deformation of multilayers exhibits driven system behavior during alloying. As the length scale of the layer thickness converges to the length scale of the mixing zone during rolling, amorphization develops in appreciable volumes. The results from selected experiments demonstrate that the relative specific interfacial area is the key microstructural metric to describe the deformation-driven alloying.
It is a pleasure for us to honor Professor Herbert Gleiter on his 65th birthday. We are most grateful for his keen insight, novel ideas, great enthusiasm, wise counsel, warm and pleasant personality and encouragement. JHP is privileged to have his friendship over the past three decades. The continued support of the Army Research Office (DAAD 19-01-1-0486) and the encouragement of Dr. W. Mullins for the study of novel microstructure synthesis by intense plastic deformation are gratefully appreciated.
References
[1] H. Gleiter: Progr. Mat. Sci. 33 (1989) 223.10.1016/0079-6425(89)90001-7Suche in Google Scholar
[2] R. Birringer: Ph.D. Thesis, Universität des Saarlandes, Saarbrücken (1985).Suche in Google Scholar
[3] A.S. Edelstein, R.C. Cammarata (Eds.): Nanomaterials: Synthesis, Properties and Applications, Inst. of Physics Publishing, Bristol, UK (1998).10.1201/9781482268591Suche in Google Scholar
[4] G. Martin: Phys. Rev. B 30 (3) (1984) 1424.10.1103/PhysRevB.30.1424Suche in Google Scholar
[5] W.L. Johnson: Progr. Mat. Sci. 30 (1986) 81.10.1016/0079-6425(86)90005-8Suche in Google Scholar
[6] G. Martin, P. Bellon: Solid State Physics 50 (1997) 189.10.1016/S0081-1947(08)60605-0Suche in Google Scholar
[7] R.A. Enrique, P. Bellon: Phys. Rev. Lett. 84 (13) (2000) 2885.10.1103/PhysRevLett.84.2885Suche in Google Scholar
[8] Viewpoint Set “Materials under Driving Forces”, Scripta Mater. (in preparation).Suche in Google Scholar
[9] A.W. Weeber, H. Bakker: Physica B 153 (1988) 153.10.1016/0921-4526(88)90038-5Suche in Google Scholar
[10] M. Atzmon, J.D. Verhoeven, E.D. Gibson, W.L. Johnson: Appl. Phys. Lett. 45 (10) (1984) 1052.10.1063/1.95064Suche in Google Scholar
[11] L. Schultz, in: M. von Allmen (Ed.), Amorphous metals and non-equilibrium processing, Les Editions de Physique, Les Ulis (1984) 135.Suche in Google Scholar
[12] F. Bordeaux, A.R. Yavari, P. J. Desré: Mat. Sci. Engr. 97 (1988) 129.10.1016/0025-5416(88)90026-2Suche in Google Scholar
[13] J. Wadsworth, O.D. Sherby: Progr. Mat. Sci. 25 (1980) 35.10.1016/0079-6425(80)90014-6Suche in Google Scholar
[14] S. Ohsaki, K. Yamazaki, K. Hono: Scripta Mater. 48 (2003) 1569.10.1016/S1359-6462(03)00162-3Suche in Google Scholar
[15] R.J. Hebert, J.H. Perepezko: Scripta Mater. (to be published).Suche in Google Scholar
[16] R.J. Hebert: Ph.D. Thesis, University of Wisconsin-Madison (2003).Suche in Google Scholar
[17] R.J. Hebert, J.H. Perepezko: Mat. Sci. Forum 386– 388 (2002) 21.10.4028/www.scientific.net/MSF.386-388.21Suche in Google Scholar
[18] J.H. Perepezko in: L.H. Bennett, T.B. Massalski, B.C. Giessen (Eds.), Alloy Phase Diagrams, MRS Proceeding 19 (1983) 223.Suche in Google Scholar
[19] P. Bellon, R.S. Averback: Phys. Rev. Lett. 74 (10) (1995) 1819.10.1103/PhysRevLett.74.1819Suche in Google Scholar
[20] F. Cardellini, G. Mazzone, M. Vittori-Antisari: Acta Mater. 44 (4) (1996) 1511.10.1016/1359-6454(95)00286-3Suche in Google Scholar
[21] G. Wassermann: Z. f. Werkstofftechnik 7 (1976) 316.10.1002/mawe.19760070906Suche in Google Scholar
[22] J.J. Petrovich, A.K. Vasudevan: Mat. Sci. Engr. 34 (1978) 39.10.1016/0025-5416(78)90007-1Suche in Google Scholar
[23] E.E. Underwood: Quantitative Stereology, Addison-Wesley, Reading (1970).Suche in Google Scholar
[24] D. Kuhlmann-Wilsdorf, M.S. Bednar: Scripta Metall. 28 (1993) 371.10.1016/0956-716X(93)90444-WSuche in Google Scholar
[25] R.B. Schwarz: Mat. Sci. Forum 269–272 (1998) 269.10.4028/www.scientific.net/MSF.269-272.665Suche in Google Scholar
[26] V. Yamakov, D.Wolf, M. Salazar, S.R. Phillpot, H. Gleiter: Acta Mater. 49 (2001) 2713.10.1016/S1359-6454(01)00167-7Suche in Google Scholar
[27] F. Bordeaux, A.R. Yavari: J. Appl. Phys. 67 (5) (1989) 2385.10.1063/1.345540Suche in Google Scholar
[28] J.H. Perepezko: Composite Interfaces 1 (1993) 463.10.1016/0022-3093(93)90002-FSuche in Google Scholar
[29] P.J. Desré, A.R. Yavari: Phys. Rev. Lett. 64 (13) (1990) 1533.10.1103/PhysRevLett.64.1533Suche in Google Scholar
[30] D. Das, P.P. Chatterjee, I. Manna, S.K. Pabi: Scripta Mater. 41 (8) (1999) 861.10.1016/S1359-6462(99)00220-1Suche in Google Scholar
[31] S.K. Pabi, I. Manna, B.S. Murty: Bull. Mater. Sci. 22 (3) (1999) 321.10.1007/BF02749938Suche in Google Scholar
[32] E.E. Novikova, Y.V. Tatyanin, V.G. Kurdjumov: Scripta Metall. 33 (6) (1995) 851.10.1016/0956-716X(95)00259-XSuche in Google Scholar
© 2003 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events
Artikel in diesem Heft
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events