Abstract
The present paper reports on a combined analytical and structural study of nanocrystalline Fe90Zr7B3 by means of positron annihilation, (analytical) high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction. Particular focus is laid on the chemical nature of the intergranular amorphous matrix which occurs between the α-Fe nanocrystallites. Energy-dispersive X-ray measurements (EDX) with an electron nanobeam reveal an increased Zr content at the interface between the nanocrystallites and the intergranular amorphous phase. According to positron lifetime measurements, the intergranular amorphous phase and the interfaces between this phase and the nanocrystallites exhibit structural free volumes of the mean size slightly smaller than a lattice vacancy as in the amorphous precursor material. Coincident Doppler broadening measurements of the positron-electron annihilation photons show that the fraction of Zr in the neighborhood of the structural free volumes is higher in nanocrystalline Fe90Zr7B3 than in the amorphous state indicating an enhanced Zr concentration in the interfaces. These results are in good agreement with the HRTEM/ EDX studies and demonstrate the potentials of the coincident Doppler broadening technique for a chemical characterization of structurally complex materials on an atomistic scale.
-
The authors are indebted to H. Gleiter for continuous support. The amorphous alloy Fe90Zr7B3 was obtained from A. Kojima (Alps Electric Co. Ltd, Niigata, Japan).
References
[1] M.E. McHenry, M.A. Willard, D.E. Laughlin: Progr. Mat. Sci. 44 (1999) 291.10.1016/S0079-6425(99)00002-XSearch in Google Scholar
[2] G. Herzer: Scr. Metall. Mat. 33 (1995) 1741.10.1016/0956-716X(95)00397-ESearch in Google Scholar
[3] A. Makino, A. Inoue, T. Masumoto: Mater. Trans. JIM 36 (1995) 924.10.2320/matertrans1989.36.924Search in Google Scholar
[4] A. Inoue, A. Takeuchi, A. Makino, T. Masumoto: Sci. Pep. RITU A 42 (1996) 143.Search in Google Scholar
[5] R. Würschum, S. Herth, U. Brossmann: Advanced Engin. Mater. 5 (2003) 365.10.1002/adem.200310079Search in Google Scholar
[6] K. Hono, K. Hiraga, Q. Wang, A. Inoue, T. Sakurai: Acta Metall. Mater. 40 (1992) 2137.10.1016/0956-7151(92)90131-WSearch in Google Scholar
[7] K. Hono, J.-L. Li, Y. Ueki, A. Inoue, T. Sakurai: Appl. Surf. Sci. 67 (1993) 398.10.1016/0169-4332(93)90344-BSearch in Google Scholar
[8] F. van Bouwelen, J. Sietsma, C.D. de Haan, A. van den Beukel: Appl Phys. Lett. 61 (1992) 2536.10.1063/1.108485Search in Google Scholar
[9] R. Würschum, E. Shapiro, R. Dittmar, H.-E. Schaefer: Phys. Rev. B 62 (2000) 12021.10.1103/PhysRevB.62.12021Search in Google Scholar
[10] R. Würschum: Mater. Sci. Forum 363–365 (2001) 35.10.4028/www.scientific.net/MSF.363-365.35Search in Google Scholar
[11] U. Brossmann, H.-E. Schaefer, R. Würschum, in: H.S. Nalwa (Ed.), Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, in press (2003).Search in Google Scholar
[12] R. Würschum, P. Farber, R. Dittmar, P. Scharwaechter, W. Frank, H.-E. Schaefer: Phys. Rev. Lett. 79 (1997) 4918.10.1103/PhysRevLett.79.4918Search in Google Scholar
[13] P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, F.G. Lynn: Phys. Rev. Lett. 77 (1996) 2097.10.1103/PhysRevLett.77.2097Search in Google Scholar PubMed
[14] A.A. Rempel, W. Sprengel, K. Blaurock, K.J. Reichle, J. Major, H.-E. Schaefer: Phys. Rev. Lett. 89 (2002) 185501.10.1103/PhysRevLett.89.185501Search in Google Scholar PubMed
[15] A.A. Valeeva, A.A. Rempel, W. Sprengel, H.-E. Schaefer: Phys. Chem. Chem. Phys. 5 (2003) in press.10.1039/b300147bSearch in Google Scholar
[16] L. Pasquini, A.A. Rempel, R. Würschum, K. Reimann, M.A. Müller, B. Fultz, H.-E. Schaefer: Phys. Rev. B 63 (2001) 134114-1.10.1103/PhysRevB.63.134114Search in Google Scholar
[17] S. Herth: Dissertation, Universität Suttgart (2003).Search in Google Scholar
[18] E.M. James, N.D. Browning, A.W. Nicholls, M. Kawasaki, Y. Xin, S. Stemmer: J. Electron Micros. 47 (1998) 561.10.1093/oxfordjournals.jmicro.a023629Search in Google Scholar
[19] K. Blaurock: Diploma Thesis, Universität Stuttgart (2001).Search in Google Scholar
[20] H.P. Klug, L.E. Alexander: X-ray diffraction procedures, Wiley, New York (1974).Search in Google Scholar
[21] K. Reimann, R. Würschum: J. Appl. Phys. 81 (1997) 7186.10.1063/1.365307Search in Google Scholar
[22] R. Würschum, A. Seeger: Phil. Mag. A 73 (1996) 1489.10.1080/01418619608245146Search in Google Scholar
[23] U. Brossmann, W. Puff, R. Würschum, in: E. Kaufmann (Ed.), Characterization of Materials, John Wiley, Hoboken, NJ, USA, on-line publication http://www.mrw.interscience.wiley.com/com/(2003)Search in Google Scholar
© 2003 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events