Home Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
Article
Licensed
Unlicensed Requires Authentication

Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer

  • H. W. Zhang , L. Wang , Z. K. Hei , G. Liu , J. Lu and K. Lu EMAIL logo
Published/Copyright: February 7, 2022
Become an author with De Gruyter Brill

Abstract

A nanostructured surface layer was produced on an AISI 304 stainless steel plate by means of a surface mechanical attrition treatment (SMAT). Low-temperature plasma nitriding of the SMAT stainless steel sample was investigated in comparison with the coarse-grained sample by using structural analysis (X-ray diffraction, scanning electron microscopy, and transmission electron microscopy) as well as mechanical property measurements. It shows a much thicker nitrided layer is formed on the SMAT sample relative to that in the coarse-grained counterpart nitrided under the same condition. The nitrided layer in the SMAT sample is composed of nanostructured austenite expansion and martensite expansion with high supersaturations of nitrogen. The surface hardness and the hardened surface layer thickness, as well as the abrasive and the adhesive wear resistances of the nitrided SMAT sample are much enhanced relative to the nitrided coarse-grained sample.


Prof. Dr. K. Lu Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Science Shenyang 110016, People’s Republic of China Tel.: +86 24 2390 6826 Fax: +86 24 2399 8660

Dedicated to Professor Dr. Dr. h. c. Herbert Gleiter on the occasion of his 65th birthday


  1. Financial support from the National Science Foundation of China (Grant No. 50021101, 10175012), the Ministry of Science and Technology of China (Grant G1999064505), and the Max-Planck Society of Germany is acknowledged.

References

[1] B. Billon, A. Hendry: Surf. Eng. 1 (1985) 114.10.1179/sur.1985.1.2.114Search in Google Scholar

[2] R.D. Whittle, V.D. Scott: Met. Technol. 11 (1984) 231.10.1179/030716984803274792Search in Google Scholar

[3] E. Rolinski: Surf. Eng. 3 (1987) 35.10.1179/sur.1987.3.1.35Search in Google Scholar

[4] Z.L. Zhang, T. Bell: Surf. Eng. 1 (1985) 131.10.1179/sur.1985.1.2.131Search in Google Scholar

[5] H. Gleiter: Prog. Mater. Sci. 33 (1989) 223.10.1016/0079-6425(89)90001-7Search in Google Scholar

[6] R. Birringer, H. Gleiter, H.-P. Klein, P. Marquardt: Phys. Lett. A 102 (1984) 365.10.1016/0375-9601(84)90300-1Search in Google Scholar

[7] R. Birringer, U. Herr, H. Gleiter: Suppl. Trans. Jpn. Inst. Met. 17 (1986) 43.Search in Google Scholar

[8] S. Schumacher, R. Birringer, R. Strauss, H. Gleiter: Acta Metall. 37 (1989) 2485.10.1016/0001-6160(89)90046-1Search in Google Scholar

[9] T. Muetschele, R. Kirchheim: Scripta Metall. 21 (1987) 135.10.1016/0036-9748(87)90423-6Search in Google Scholar

[10] H.E. Schaefer, in: Defects in Insulting Materials. O. Kanert, J.M. Spaeth (Eds.), World Scientific Pub. (1993) 122.Search in Google Scholar

[11] A. Calka, J.I. Nikolov, J.S.Williams: Mater. Sci. Forum 527 (1996) 225.10.4028/www.scientific.net/MSF.225-227.527Search in Google Scholar

[12] M.S. El-Eskandarany, K. Sumiyama, K. Aoki, K. Suzuki: Mater. Sci. Forum 801 (1992) 88.10.4028/www.scientific.net/MSF.88-90.801Search in Google Scholar

[13] C. Suryanarayana: Prog. Mater. Sci. 46 (2001) 1.10.1016/S0079-6425(99)00010-9Search in Google Scholar

[14] W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, K. Lu: Science 299 (2003) 686.10.1126/science.1080216Search in Google Scholar PubMed

[15] K. Lu, J. Lu: J. Mater. Sci. Technol. 15 (1999) 193.10.1179/026708399101505310Search in Google Scholar

[16] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu: Acta Mater. 50 (2002) 4603.10.1016/S1359-6454(02)00310-5Search in Google Scholar

[17] H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu: Acta Mater. 51 (2003) 1871.10.1016/S1359-6454(02)00594-3Search in Google Scholar

[18] L. Wang, X.L. Xu, J.J. Xu, Y.Q. Shi: Thin Solid Films 391 (2001) 11.10.1016/S0040-6090(01)00976-2Search in Google Scholar

[19] O. Ozturk, D.L. Williamson: J. Appl. Phys. 77 (1995) 3839.10.1063/1.358561Search in Google Scholar

[20] X.L. Xu, L. Wang, Z.W. Yu, J.B. Qiang, Z.K. Hei: Metall. Mater. Trans. A 31 (2000) 1193.10.1007/s11661-000-0115-1Search in Google Scholar

[21] M.P. Fewell, J.M. Priest, G.A. Collins, K.T. Short: Surf. Coat. Technol. 131 (2000) 284.10.1016/S0257-8972(00)00793-3Search in Google Scholar

[22] J.D. Fast, M.B. Verrijp: J. Iron Steel Ins. 176 (1954) 24.Search in Google Scholar

Received: 2003-05-04
Published Online: 2022-02-07

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Articles/Aufsätze
  3. From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
  4. Interface stress in nanocrystalline materials
  5. Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
  6. Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
  7. Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
  8. Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
  9. Nanoceramics by chemical vapour synthesis
  10. Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
  11. Simulations of the inert gas condensation processes
  12. Unconventional deformation mechanism in nanocrystalline metals?
  13. Alloying reactions in nanostructured multilayers during intense deformation
  14. Impact of grain boundary character on grain boundary kinetics
  15. Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
  16. Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
  17. Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
  18. New materials from non-intuitive composite effects
  19. On the line defects associated with grain boundary junctions
  20. Young’s modulus in nanostructured metals
  21. The kinetics of phase formation in an ultra-thin nanoscale layer
  22. Notifications/Mitteilungen
  23. Personal/Personelles
  24. News
  25. DGM Events
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0206/html
Scroll to top button