Abstract
It is widely accepted that for the very smallest grain sizes (typically below 20 – 30 nm), dislocations play no significant role in the deformation of nanocrystalline materials. However, the grain-boundary mechanisms responsible for the reported decrease in strength with decreasing grain size in this regime (the ‘inverse Hall–Petch effect’) remain unclear. Here, we demonstrate by molecular-dynamics simulation that, in the absence of both grain growth and any dislocations, nanocrystalline fcc metals deform via a mechanism involving an intricate interplay between grain-boundary sliding and grain-boundary diffusion. By quantitatively reproducing the well-known Coble-creep formula for coarse-grained materials, we show that the ‘inverse Hall–Petch effect’ arises from sliding-accommodated grain-boundary diffusion creep. Previous, apparently contradictory, suggestions that GB sliding, on the one hand, or GB-diffusion creep, on the other, are responsible for this behavior can thus be reconciled as originating from one and the same deformation mechanism. We discuss the reasons why we believe that these simulations also capture the room-temperature deformation behavior of nanocrystalline fcc metals in the absence of dislocation nucleation and microcracking.
-
V.Y., D.W. and S.R.P. are supported by the US Department of Energy, BES-Materials Science under contract W-31-109-Eng-38. V.Y. is also grateful for support from the DOE/BES-MS Computational Materials Science Network (CMSN). A.K.M. acknowledges support from NSF-DMR. We are grateful for grants of computer time on the Cray-T3E at the John-von-Neumann-Institute for Computing in Jülich, Germany, and on the Chiba City Linux cluster at ANL.
References
[1] J. Karch, R. Birringer, H. Gleiter: Nature 330 (1987) 556.10.1038/330556a0Suche in Google Scholar
[2] See, e. g., C.C. Koch, C. Suryanarayana, in: J.C.M. Li (Ed.), Microstructure and Properties of Materials, Vol. 2, Chapter 6, World Scientific Publishing, Singapore (2000) 380.Suche in Google Scholar
[3] S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee: Nature 398 (1999) 684.10.1038/19486Suche in Google Scholar
[4] L. Lu, M.L. Sui, K. Lu: Science 287 (2001) 1463.10.1126/science.287.5457.1463Suche in Google Scholar
[5] B.N. Kim, K. Hiraga, K. Morita, Y. Sakka: Nature 413 (2001) 288.10.1038/35095025Suche in Google Scholar
[6] T.G. Nieh, J. Wadsworth: Scripta metall. mater. 25 (1991) 955.10.1016/0956-716X(91)90256-ZSuche in Google Scholar
[7] R.W. Siegel: Mat. Sci. Forum 235–238 (1997) 851.10.4028/www.scientific.net/MSF.235-238.851Suche in Google Scholar
[8] D.G. Morris, M.A. Morris: Mat. Sci. Forum 235–238 (1997) 861.10.4028/www.scientific.net/MSF.235-238.861Suche in Google Scholar
[9] See, e. g., S. Yip: Nature 391 (1998) 532.10.1038/35254Suche in Google Scholar
[10] A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter: Scripta metall. 23 (1989) 1679.10.1016/0036-9748(89)90342-6Suche in Google Scholar
[11] V.Y. Gertsman, M. Hoffmann, H. Gleiter, R. Birringer: Acta metall. mater. 42 (1994) 3539.10.1016/0956-7151(94)90486-3Suche in Google Scholar
[12] R.A. Masamura, P.M. Hazzledine, C.S. Pande: Acta mater. 46 (1998) 4527.10.1016/S1359-6454(98)00150-5Suche in Google Scholar
[13] V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter: Acta mater. 49 (2001) 2713.10.1016/S1359-6454(01)00167-7Suche in Google Scholar
[14] J. Schiotz, F.D. DiTolla, K.W. Jacobsen: Nature 391 (1998) 561.10.1038/35328Suche in Google Scholar
[15] J. Schiotz, T. Vegge, F.D. DiTolla, K.W. Jacobsen, Phys. Rev. B 60 (1999) 11971.10.1103/PhysRevB.60.11971Suche in Google Scholar
[16] H. van Swygenhoven, M. Spaczer, A. Caro, D. Farkas: Phys. Rev. B 60 (1999) 22.10.1103/PhysRevB.60.22Suche in Google Scholar
[17] H. van Swygenhoven, M. Spaczer, A. Caro: Acta mater. 47 (1999) 3117.10.1016/S1359-6454(99)00109-3Suche in Google Scholar
[18] H. van Swygenhoven, A. Caro: Appl. Phys. Lett. 71 (1997) 1652.10.1063/1.119785Suche in Google Scholar
[19] H. van Swygenhoven, A. Caro: Phys. Rev. B 58 (1998) 11246.10.1103/PhysRevB.58.11246Suche in Google Scholar
[20] H. van Swygenhoven, P. Derlet: Phys. Rev. B 64 (2001) 224105.10.1103/PhysRevB.64.224105Suche in Google Scholar
[21] P. Keblinski, D. Wolf, H. Gleiter: Interface Science 6 (1998) 205.10.1023/A:1008664218857Suche in Google Scholar
[22] R.L. Coble: J. Appl. Phys. 34 (1963) 1697.10.1063/1.1702656Suche in Google Scholar
[23] R. Raj, M.F. Ashby: Metall. Trans 2 (1971) 1113.10.1007/BF02664244Suche in Google Scholar
[24] I.M. Lifshitz: Soviet Phys. JETP 17 (1963) 909.Suche in Google Scholar
[25] T.G. Langdon: Mater. Sci. Eng. A 283 (2000) 266.10.1016/S0921-5093(00)00624-9Suche in Google Scholar
[26] V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter: Acta mater. 50 (2002) 61.10.1016/S1359-6454(01)00329-9Suche in Google Scholar
[27] P. Keblinski, D. Wolf, S.R. Phillpot, H. Gleiter: Scripta mater. 41 (1999) 631.10.1016/S1359-6462(99)00142-6Suche in Google Scholar
[28] S.M. Foiles, J.B. Adams: Phys. Rev. B 40 (1986) 5909.10.1103/PhysRevB.40.5909Suche in Google Scholar
[29] P. Keblinski, D. Wolf, S.R. Phillpot, H. Gleiter: Phil. Mag. A 79 (1999) 2735.10.1080/01418619908212021Suche in Google Scholar
[30] See, for example, W.D. Kingery, H.K. Bowen, D.R. Uhlmann: Introduction to Ceramics, 2nd Edition, John Wiley & Sons, New York (1976) 739.Suche in Google Scholar
[31] W.R. Cannon: Phil. Mag. 25 (1972) 1489.10.1080/14786437208223868Suche in Google Scholar
[32] R.N. Stevens: Phil. Mag. 23 (1971) 265.10.1080/14786437108216383Suche in Google Scholar
[33] W.A. Rachinger: J. Inst. Metals 81 (1952 –1953) 33.Suche in Google Scholar
[34] M.F. Ashby, R.A. Verrall: Acta metall. 21 (1973)10.1016/0001-6160(73)90057-6Suche in Google Scholar
[35] R.C. Gifkins: Metall. Trans. 7A (1976) 1225.10.1007/BF02656607Suche in Google Scholar
© 2003 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events
Artikel in diesem Heft
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events