Startseite Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye

  • Hui Xu , Robert Wallace und Maria Hepel EMAIL logo
Veröffentlicht/Copyright: 28. November 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Albumin, as an antifouling agent preventing non-specific adsorption, is widely applied in biosensor construction and in the design of nanocarriers for theranostic applications. However, albumin is not completely inert and it interacts with many endogenous and exogenous compounds. The present work investigates the interactions of bovine serum albumin (BSA) with phenol red dye (PR), a common component of cell-growth media. PR was found to bind to BSA, with the affinity constant KA = (2.5 ± 0.8) × 105 L mol−1, and that it quenches the intrinsic BSA fluorescence through the F¨orster non-radiative resonance energy transfer (FRET) via static modes, with critical FRET distance of R0 = 2.65 nm. Synchronous fluorescence spectroscopy measurements indicated a conformational transition of BSA in the presence of PR to a conformation with tyrosine residues surrounded by a more hydrophobic environment. Thermodynamic parameters, ΔH°, ΔG° and ΔS°, determined using fluorescence and isothermal titration microcalorimetry, indicated that entropic contribution played a major role at ambient temperature. It was also found that common metal ions increased KA but Ca2+ and Fe3+ decreased it.

References

Akdogan, Y., Reichenwallner, J., & Hinderberger, D. (2012). Evidence for water-tuned structural differences in proteins: An approach emphasizing variations in local hydrophilicity. PLoS One, 7, e45681. DOI: 10.1371/journal.pone.0045681.10.1371/journal.pone.0045681Suche in Google Scholar

Axelsson, I. (1978). Characterization of proteins and other macromolecules by agarose gel chromatography. Journal of Chromatography A, 152, 21-32. DOI: 10.1016/s0021-9673(00)85330-3.10.1016/S0021-9673(00)85330-3Suche in Google Scholar

Carter, D., & Ho, J. X. (1994). Structure of serum albumin. In C. B. Anfinsen, J. T. Edsall, F. M. Richards, & D. S. Eisenberg (Eds.), Advances in protein chemistry (Vol. 45, pp. 153-203). New York, NY, USA: Academic Press.Suche in Google Scholar

Cooper, M. A. (2003). Label-free screening of bio-molecular interactions. Analytical and Bioanalytical Chemistry, 377, 834-842. DOI: 10.1007/s00216-003-2111-y.10.1007/s00216-003-2111-ySuche in Google Scholar

Dam, T. K., & Brewer, C. F. (2002). Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chemical Reviews, 102, 387-430. DOI: 10.1021/cr000401x.10.1021/cr000401xSuche in Google Scholar

Doyle, M. L. (1997). Characterization of binding interactions by isothermal titration calorimetry. Current Opinion in Biotechnology, 8, 31-35. DOI: 10.1016/s0958-1669(97)80154-1.10.1016/S0958-1669(97)80154-1Suche in Google Scholar

Feng, X. Z., Jin, R. X., Qu, Y., & He, X. W. (1996). Studies of the ions’ effect on the binding interaction between HP and BSA. Chemical Journal of Chinese Universities, 17, 866-869.Suche in Google Scholar

Ferrer, M. L., Duchowicz, R., Carrasco, B., de la Torre, J. G., & Acu˜na, A. U. (2001). The conformation of serum albumin in solution: A combined phosphorescence depolarizationhydrodynamic modeling study. Biophysical Journal, 80, 2422-2430. DOI: 10.1016/s0006-3495(01)76211-x.10.1016/S0006-3495(01)76211-XSuche in Google Scholar

Förster, T., & Sinanoglu, O. (1966). Delocalized excitation and excitation transfer. In O. Sinanoglu (Ed.), Modern quantum chemistry (Vol. 3, pp. 93). New York, NY, USA: Academic Press.Suche in Google Scholar

Fujita, J. Y., Mori, I., Toyoda, M., Kato, K., Nakamura, M., & Nakanishi, T. (1990). Simple and sensitive spectrophotometric determination of albumin with o-sulfophenylfluoroneuranium( VI) complex, and binding study. Chemical and Pharmaceutical Bulletin, 38, 956-959.10.1248/cpb.38.956Suche in Google Scholar

Gifford, R., Kehoe, J. J., Barnes, S. L., Kornilayev, B. A., Alterman, M. A., & Wilson, G. S. (2006). Protein interactions with subcutaneously implanted biosensors. Biomaterials, 27, 2587-2598. DOI: 10.1016/j.biomaterials.2005.11.033.10.1016/j.biomaterials.2005.11.033Suche in Google Scholar PubMed

Guo, C. C., Li, H. P., Zhang, X. B., & Tong, R. B. (2003). Synthesis of meso-5,10,15,20-tetra[4-(N-pyrrolidinyl)phenyl] porphyrin and its interaction with bovine serum albumin. Chemical Journal of Chinese Universities, 24, 282-287.Suche in Google Scholar

He, W. Y., Li, Y., Xue, C. X., Hu, Z. D., Chen, X. G., & Sheng, F. L. (2005). Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorganic and Medicinal Chemistry, 13, 1837-1845. DOI: 10.1016/j.bmc.2004.11. 038.Suche in Google Scholar

Hepel, M. (2005). Effect of albumin on underpotential lead deposition and stripping on Ag-RDE. Electroanalysis, 17, 1401-1412. DOI: 10.1002/elan.200503288.10.1002/elan.200503288Suche in Google Scholar

Hepel, M., & Stobiecka, M. (2007). Interactions of adsorbed albumin with underpotentially deposited copper on gold piezoelectrodes. Bioelectrochemistry, 70, 155-164. DOI: 10.1016/ j.bioelechem.2006.03.032.10.1016/j.bioelechem.2006.03.032Suche in Google Scholar PubMed

Hepel, M., & Stobiecka, M. (2011). Comparative kinetic model of fluorescence enhancement in selective binding of monochlorobimane to glutathione. Journal of Photochemistry and Photobiology A: Chemistry, 225, 72-80. DOI: 10.1016/j.jphotochem.2011.09.028.10.1016/j.jphotochem.2011.09.028Suche in Google Scholar

Hepel, M. (2012). Functional gold nanoparticles for biointerfaces. In M. Hepel, & C. J. Zhong (Eds.), Functional nanoparticles for bioanalysis, nanomedicine & bioelectronic devices (Vol. 1112, pp. 147-176). Oxford, UK: Oxford University Press. DOI: 10.1021/bk-2012-1112.ch006.10.1021/bk-2012-1112.ch006Suche in Google Scholar

Hu, Y. J., Liu, Y., Wang, J. B., Xiao, X. H., & Qu, S. S. (2004). Study of the interaction between monoammonium monoammonium glycyrrhizinate and bovine serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 36, 915-919. DOI: 10.1016/j.jpba.2004.08.021.10.1016/j.jpba.2004.08.021Suche in Google Scholar

Hu, Y. J., Liu, Y., Zhang, L. X., Zhao, R. M., & Qu, S. S. (2005). Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. Journal of Molecular Structure, 750, 174-178. DOI: 10.1016/j.molstruc. 2005.04.032.Suche in Google Scholar

Jelesarov, I., & Bosshard, H. R. (1999). Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. Journal of Molecular Recognition, 12, 3-18. DOI: 10.1002/(SICI)1099-1352(199901/02)12:1<3::AIDJMR441> 3.0.CO;2-6.Suche in Google Scholar

Kasai, S., Mizuma, T., & Awazu, S. (1987). Fluorescence energy transfer study of the relationship between the lone tryptophan residue and drug binding sites in human serum albumin. Journal of Pharmaceutical Sciences, 76, 387-392. DOI: 10.1002/jps.2600760510.10.1002/jps.2600760510Suche in Google Scholar

Klajnert, B., & Bryszewska, M. (2002). Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry, 55, 33-35. DOI: 10.1016/s1567-5394(01)00170-0.10.1016/S1567-5394(01)00170-0Suche in Google Scholar

Kragh-Hansen, U. (1981). Effects of aliphatic fatty acids on the binding of Phenol Red to human serum albumin. Biochemical Journal, 195, 603-613.10.1042/bj1950603Suche in Google Scholar

Ladbury, J. E., & Chowdhry, B. Z. (1996). Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chemistry and Biology, 3, 791-801. DOI: 10.1016/s1074-5521(96)90063-0.10.1016/S1074-5521(96)90063-0Suche in Google Scholar

Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 12, 4161-4170. DOI: 10.1021/ bi00745a020.10.1021/bi00745a020Suche in Google Scholar

Leavitt, S., & Freire, E. (2001). Direct measurement of protein binding energetics by isothermal titration calorimetry. Current Opinion in Structural Biology, 11, 560-566. DOI: 10.1016/s0959-440x(00)00248-7.10.1016/S0959-440X(00)00248-7Suche in Google Scholar

Li, G. X., Li, J. Q., Wei, Y. I., & Dong, C. (2005). Study on the interaction of tetraiodofluorescein and bovine serum albumin by fluorimetry. Spectroscopy and Spectral Analysis, 25, 1277-1280.Suche in Google Scholar

Liu, X. F., Xia, Y. M., Fang, Y., Liu, L. L., & Zou, L. (2004). Interaction between bovine serum albumin and berberine chloride extracted from chinese herbs of Coptis chinensis Franch. Chemical Journal of Chinese Universities, 25, 2099-2103.Suche in Google Scholar

Ma, H. M., Chen, X., Zhang, N., Han, Y. Y., Wu, D., Du, B., & Wei, Q. (2009). Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 465-469. DOI: 10.1016/j.saa.2008.10.019.10.1016/j.saa.2008.10.019Suche in Google Scholar PubMed

MacFaddin, J. F. (2000). Biochemical tests for identification of medical bacteria (3rd ed.). Baltimore, MD, USA: Lippincott, Williams and Wilkins.Suche in Google Scholar

Michnik, A. (2003). Thermal stability of bovine serum albumin. DSC study. Journal of Thermal Analysis and Calorimetry, 71, 509-519. DOI: 10.1023/a:1022851809481.10.1023/A:1022851809481Suche in Google Scholar

Michnik, A., Michalik, K., Kluczewska, A., & Drzaga, Z. (2006). Comparative DSC study of human and bovine serum albumin. Journal of Thermal Analysis and Calorimetry, 84, 113-117. DOI: 10.1007/s10973-005-7170-1.10.1007/s10973-005-7170-1Suche in Google Scholar

Nowicka, A. M., Kowalczyk, A., Stojek, Z., & Hepel, M. (2010). Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants. Biophysical Chemistry, 146, 42-53. DOI: 10.1016/j.bpc.2009.10.003.10.1016/j.bpc.2009.10.003Suche in Google Scholar

Pietrzyk, A., Suriyanarayanan, S., Kutner, W., Chitta, R., Zandler, M. E., & D’Souza, F. (2010). Molecularly im printed polymer (MIP) based piezoelectric microgravimetry chemosensor for selective determination of adenine. Biosensors and Bioelectronics, 25, 2522-2529. DOI: 10.1016/j.bios. 2010.04.015.Suche in Google Scholar

Qi, Z. D., Zhou, B., Xiao, Q., Shi, C., Liu, Y., & Dai, J. (2008). Interaction of rofecoxib with human serum albumin: Determination of binding constants and the binding site by spectroscopic methods. Journal of Photochemistry and Photobiology A: Chemistry, 193, 81-88. DOI: 10.1016/j.jphotochem.2007.06.011.10.1016/j.jphotochem.2007.06.011Suche in Google Scholar

Rodkey, F. L. (1961). The binding of phenol red by serum and by bovine serum albumin. Archives of Biochemistry and Biophysics, 94, 38-47. DOI: 10.1016/0003-9861(61)90008-x.10.1016/0003-9861(61)90008-XSuche in Google Scholar

Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20, 3096-3102. DOI: 10.1021/bi00514a017.10.1021/bi00514a017Suche in Google Scholar PubMed

Sheikh, M. I., & Gerdes, U. (1978). Interaction of phenolsulphonphthalein dyes with rabbit plasma and rabbit serum albumin. Archives of Physiology and Biochemistry, 86, 613-623. DOI: 10.3109/13813457809055929.10.3109/13813457809055929Suche in Google Scholar PubMed

Stobiecka, M., Hepel, M., & Radecki, J. (2005). Transient conformation changes of albumin adsorbed on gold piezoelectrodes. Electrochimica Acta, 50, 4873-4887. DOI: 10.1016/j. electacta.2005.03.066.Suche in Google Scholar

Stobiecka, M., Deeb, J., & Hepel, M. (2009). Molecularlytemplated polymer matrix films for biorecognition processes: sensors for evaluating oxidative stress and redox buffering capacity. ECS Transactions, 19, 15-32. DOI: 10.1149/1.3253474.10.1149/1.3253474Suche in Google Scholar

Stobiecka, M., Deeb, J., & Hepel, M. (2010). Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: Homocysteine and cysteine. Biophysical Chemistry, 146, 98-107. DOI: 10.1016/j.bpc.2009.11.001.10.1016/j.bpc.2009.11.001Suche in Google Scholar PubMed

Stobiecka, M., & Hepel, M. (2011a). Effect of buried potential barrier in label-less electrochemical immunodetection of glutathione and glutathione-capped gold nanoparticles. Biosensors and Bioelectronics, 26, 3524-3530. DOI: 10.1016/j.bios.2011.01.038.10.1016/j.bios.2011.01.038Suche in Google Scholar PubMed

Stobiecka, M., & Hepel, M. (2011b). Double-shell gold nanoparticle- based DNA-carriers with poly-L-lysine binding surface. Biomaterials, 32, 3312-3321. DOI: 10.1016/j.biomaterials. 2010.12.064.Suche in Google Scholar

Stobiecka, M., & Hepel, M. (2011c). Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles. Physical Chemistry Chemical Physics, 13, 1131-1139. DOI: 10.1039/c0cp00553c.10.1039/C0CP00553CSuche in Google Scholar

Stobiecka, M., Molinero, A. A., Cha_lupa, A., & Hepel, M. (2012). Mercury/homocysteine ligation-induced ON/OFFswitching of a T-T mismatch-based oligonucleotide molecular beacon. Analytical Chemistry, 84, 4970-4978. DOI: 10.1021/ac300632u.10.1021/ac300632uSuche in Google Scholar

Sułkowska, A., Rownicka, J., Bojko, B., Po´zycka, J., Zubik- Skupie´n, I., Su_lkowski, W. (2004). Effect of guanidine hydrochloride on bovine serum albumin complex with antithyroid drugs: fluorescence study. Journal of Molecular Structure, 704, 291-295. DOI: 10.1016/j.molstruc.2003.12.065.10.1016/j.molstruc.2003.12.065Suche in Google Scholar

Turnbull, W. B., & Daranas, A. H. (2003). On the value of c: Can low affinity systems by studied by isothermal titration calorimetry. Journal of the American Chemical Society, 125, 14859-14866. DOI: 10.1021/ja036166s.10.1021/ja036166sSuche in Google Scholar

Valeur, B., & Brochon, J. C. (2001). New trends in fluorescence spectroscopy. Berlin, Germany: Springer. DOI: 10.1007/978-3-642-56853-4.10.1007/978-3-642-56853-4Suche in Google Scholar

Whitesides, G. M., & Krishnamurthy, V. M. (2006). Designing ligands to bind proteins. Quarterly Reviews of Biophysics, 38, 385-395. DOI: 10.1017/s0033583506004240.10.1017/S0033583506004240Suche in Google Scholar

Wright, A. K., & Thompson, M. R. (1975). Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. Biophysical Journal, 15, 137-141. DOI: 10.1016/s0006-3495(75)85797-3.10.1016/S0006-3495(75)85797-3Suche in Google Scholar

Xu, H., & Hepel, M. (2011). “Molecular beacon”-based fluorescent assay for selective detection of glutathione and cysteine. Analytical Chemistry, 83, 813-819. DOI: 10.1021/ac102850y.10.1021/ac102850ySuche in Google Scholar PubMed

Yi, P. G., Liu, J. F., Shang, Z. C., & Yu, Q. S. (2001). Study on the interaction between methylene blue and bovine serum albumin by fluorescence spectroscopy. Spectroscopy and Spectral Analysis, 21, 826-828.Suche in Google Scholar

Zhou, Q. Y., & Yu, Y. (2003). Interaction studies of 2-(8- hydroxyquinoline-5-sulfoacid-7-azo)-1,8-dihydroxy-3,6- naphthalene disulfoacid with bovine serum albumin. Chinese Journal of Analytical Chemistry, 31, 976-980. Suche in Google Scholar

Received: 2014-4-21
Revised: 2014-6-7
Accepted: 2014-6-10
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0015/html?lang=de
Button zum nach oben scrollen