Home Whole-cell optical biosensor for mercury – operational conditions in saline water
Article
Licensed
Unlicensed Requires Authentication

Whole-cell optical biosensor for mercury – operational conditions in saline water

  • Andrey Solovyev , Gabriela Kuncova EMAIL logo and Katerina Demnerova
Published/Copyright: November 28, 2014
Become an author with De Gruyter Brill

Abstract

The present study demonstrates the influences of chlorides, fluorides and bromides of potassium and sodium on the growth and Hg2+-induced bioluminescence of bioreporter Escherichia coli ARL1. In a Luria-Bertani medium (LB), cell growth was inhibited by concentrations of sodium and potassium fluorides above 0.2 mol L−1. The addition of NaCl increased cell tolerance to the toxic effects of fluorides and bromides. Lag periods of 10 h and more were observed for cultivations in LB without NaCl and with halides (NaCl, KCl, NaBr, KBr, NaF and KF) at concentrations lower than 0.06 mol L−1. In a phosphate buffer (PB), the bioluminescence of E. coli ARL1, induced with HgCl2, was increased by the addition of NaCl, KCl, NaBr, KBr, NaF and KF (concentration of 0-0.25 mol L−1). In a saline phosphate buffer (PBS), the maxima of induced bioluminescence declined to 50 %, in the case of NaF (0.12 mol L−1), and to zero for KF. An addition of tryptone to the induction medium increased induced light emission ten-fold. Concentrated artificial sea water (ASW) (70-100 % ASW) inhibited bioluminescence induction. The new detection assay with E. coli ARL1 made possible the detection of 0.57 μg L−1 of HgCl2 in double-diluted artificial sea water (25 % ASW).

References

Abdulkarim, S. M., Fatimah, A. B., & Anderson, J. G. (2009). Effect of salt concentrations on the growth of heat-stressed and unstressed Escherichia coli. Journal of Food, Agriculture and Environment, 7, 51-54.Search in Google Scholar

Baker, J. L., Sudarsan, N.,Weinberg, Z., Roth, A., Stockbridge, R. B., & Breaker, R. B. (2012). Widespread genetic switches and toxicity resistance proteins for fluoride. Science, 335, 233-235. DOI: 10.1126/science.1215063.10.1126/science.1215063Search in Google Scholar

Barkay, T., Gillman, M., & Turner, R. R. (1997). Effects of dissolved organic carbon and salinity on bioavailability of mercury. Applied and Environmental Microbiology, 63, 4267-4271.10.1128/aem.63.11.4267-4271.1997Search in Google Scholar

Boszke, L., G_losi´nska, G., & Siepak, J. (2002). Some aspects of speciation of mercury in a water environment. Polish Journal of Environmental Studies, 11, 285-298.Search in Google Scholar

Condee, C. W., & Summers, A. O. (1992). A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. Journal of Bacteriology, 174, 8094-8101.10.1128/jb.174.24.8094-8101.1992Search in Google Scholar

Corbisier, P., van der Lelie, D., Borremans, B., Provoost, A., de Lorenzo, V., Brown, N. L., Lloyd, J. R., Hobman, J. L., Cs¨oregi, E., Johansson, G., & Mattiasson, B. (1999). Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica Chimica Acta, 387, 235-244. DOI: 10.1016/s0003-2670(98)00725-9.10.1016/S0003-2670(98)00725-9Search in Google Scholar

Dahl, A. L., Sanseverino, J., & Gaillard, J. F. (2011). Bacterial bioreporter detects mercury in the presence of excess EDTA. Environmental Chemistry, 8, 552-560. DOI: 10.1071/en11043.10.1071/EN11043Search in Google Scholar

Deryabin, D. G., & Aleshina, E. S. (2008). Effect of salts on luminescence of natural and recombinant luminescent bacterial biosensors. Applied Biochemistry and Microbiology, 44, 292-296. Environmental Protection Agency (2009). Basic information about mercury (inorganic) in drinking water. EPA 816-F-09-004. Washington, D.C., USA.Search in Google Scholar

Ivask, A., Green, T., Polyak, B., Mor, A., Kahru, A., Virta, M., & Marks, R. (2007). Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosensors and Bioelectronics, 22, 1396-1402. DOI: 10.1016/j.bios.2006.06.019. 10.1016/j.bios.2006.06.019Search in Google Scholar

Gerasimova, M. A., & Kudryasheva, N. S. (2002). Effects of potassium halides on bacterial bioluminescence. Journal of Photochemistry and Photobiology B: Biology, 66, 218-222. DOI: 10.1016/s1011-1344(02)00240-3.10.1016/S1011-1344(02)00240-3Search in Google Scholar

Glass, K. A., Loeffelholz, J. M., Ford, J. P., & Doyle, M. P. (1992). Fate of Escherichia coli 0157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Applied and Environmental Microbiology, 58, 2513-2516.10.1128/aem.58.8.2513-2516.1992Search in Google Scholar PubMed PubMed Central

Golding, G. R., Sparling, R., & Kelly, A. C. (2008). Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Applied and Environmental Microbiology, 74, 667-665. DOI: 10.1128/aem.00717-07.10.1128/AEM.00717-07Search in Google Scholar PubMed PubMed Central

Hakkila, K., Green, T., Leskinen, P., Ivask, A., Marks, R., & Virta, M. (2004). Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibreoptic tips. Journal of Applied Toxicology, 24, 333-342. DOI: 10.1002/jat.1020.10.1002/jat.1020Search in Google Scholar PubMed

Hidalgo, G., Chen, X. C., Hay, A. G., & Lion, L. W. (2010). Curli produced by Escherichia coli PHL628 provide protection from Hg(II). Applied and Environmental Microbiology, 76, 6939-6941. DOI: 10.1128/aem.01254-10.10.1128/AEM.01254-10Search in Google Scholar

How, J. A., Lim, J. Z. R., Goh, D. J.W., Ng,W. C., Oon, J. S. H., Lee, K. C., Lee, C. H., & Ling, M. H. T. (2013). Adaptation of Escherichia coli ATCC 8739 to 11% NaCl. Dataset Papers in Biology, 2013, 219095. DOI: 10.7167/2013/219095.10.7167/2013/219095Search in Google Scholar

Kushner, D. J. (1968). Halophilic bacteria. Advances in Applied Microbiology, 10, 73-99. DOI: 10.1016/s0065-2164(08)70189- Search in Google Scholar

Ma, H. L.,Wu, X. H., Yang, M.,Wang, J. M.,Wang, J. M., & Wang, J. D. (2014). Effects of fluoride on bacterial growth and its gene/protein expression. Chemosphere, 100, 190-193. DOI: 10.1016/j.chemosphere.2013.11.032.10.1016/j.chemosphere.2013.11.032Search in Google Scholar

Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed). New York, NY, USA: Cold Spring Harbor Laboratory Press.Search in Google Scholar

Selifonova, O., Burlage, R., & Barkay, T. (1993). Bioluminescent sensors for detection of bioavailable Hg(II)in the environment. Applied and Environmental Microbiology, 59, 3083-3090.10.1128/aem.59.9.3083-3090.1993Search in Google Scholar

Selifonova, O. V., & Barkay, T. (1994). Role of Na+ in transport of Hg2+ and induction of the Tn2l mer Operon. Applied and Environmental Microbiology, 60, 3503-3507.10.1128/aem.60.10.3503-3507.1994Search in Google Scholar

Shi, W. J., Menn, F. M., Xu, T. T., Zhuang, Z. T., Beasley, C., Ripp, S., Zhuang, J., Layton, A. C., & Sayler, G. S. (2014). C60 reduces the bioavailability of mercury in aqueous solutions. Chemosphere, 95, 324-328. DOI: 10.1016/j.chemosphere.2013.09.027.10.1016/j.chemosphere.2013.09.027Search in Google Scholar

Troussellier, M., Bonnefont, J. L., Courties, C., Derrien, A., Dupray, E., Gauthier, M., Gourmelon, M., Joux, F., Lebaron, P., Martin, Y., & Pommepuy, M. (1998). Responses of enteric bacteria to environmental stresses in seawater. Oceanologica Acta, 21, 965-981. DOI: 10.1016/s0399-1784(99)80019-x.10.1016/S0399-1784(99)80019-XSearch in Google Scholar

Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A. P., & Heringa, M. B. (2011). Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources. Analytical and Bioanalytical Chemistry, 400, 915-929. DOI: 10.1007/s00216-010-4372-6.10.1007/s00216-010-4372-6Search in Google Scholar PubMed PubMed Central

Winslow, C. E. A., Walker, H. H., & Sutermeister, M. (1932). The influence of aeration and of sodium chloride upon the growth curve of bacteria in various media. Journal of Bacteriology, 24, 185-208. 10.1128/jb.24.3.185-208.1932Search in Google Scholar PubMed PubMed Central

Received: 2014-4-1
Revised: 2014-6-3
Accepted: 2014-6-4
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0009/html?lang=en
Scroll to top button