Abstract
The present study demonstrates the influences of chlorides, fluorides and bromides of potassium and sodium on the growth and Hg2+-induced bioluminescence of bioreporter Escherichia coli ARL1. In a Luria-Bertani medium (LB), cell growth was inhibited by concentrations of sodium and potassium fluorides above 0.2 mol L−1. The addition of NaCl increased cell tolerance to the toxic effects of fluorides and bromides. Lag periods of 10 h and more were observed for cultivations in LB without NaCl and with halides (NaCl, KCl, NaBr, KBr, NaF and KF) at concentrations lower than 0.06 mol L−1. In a phosphate buffer (PB), the bioluminescence of E. coli ARL1, induced with HgCl2, was increased by the addition of NaCl, KCl, NaBr, KBr, NaF and KF (concentration of 0-0.25 mol L−1). In a saline phosphate buffer (PBS), the maxima of induced bioluminescence declined to 50 %, in the case of NaF (0.12 mol L−1), and to zero for KF. An addition of tryptone to the induction medium increased induced light emission ten-fold. Concentrated artificial sea water (ASW) (70-100 % ASW) inhibited bioluminescence induction. The new detection assay with E. coli ARL1 made possible the detection of 0.57 μg L−1 of HgCl2 in double-diluted artificial sea water (25 % ASW).
References
Abdulkarim, S. M., Fatimah, A. B., & Anderson, J. G. (2009). Effect of salt concentrations on the growth of heat-stressed and unstressed Escherichia coli. Journal of Food, Agriculture and Environment, 7, 51-54.Search in Google Scholar
Baker, J. L., Sudarsan, N.,Weinberg, Z., Roth, A., Stockbridge, R. B., & Breaker, R. B. (2012). Widespread genetic switches and toxicity resistance proteins for fluoride. Science, 335, 233-235. DOI: 10.1126/science.1215063.10.1126/science.1215063Search in Google Scholar
Barkay, T., Gillman, M., & Turner, R. R. (1997). Effects of dissolved organic carbon and salinity on bioavailability of mercury. Applied and Environmental Microbiology, 63, 4267-4271.10.1128/aem.63.11.4267-4271.1997Search in Google Scholar
Boszke, L., G_losi´nska, G., & Siepak, J. (2002). Some aspects of speciation of mercury in a water environment. Polish Journal of Environmental Studies, 11, 285-298.Search in Google Scholar
Condee, C. W., & Summers, A. O. (1992). A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. Journal of Bacteriology, 174, 8094-8101.10.1128/jb.174.24.8094-8101.1992Search in Google Scholar
Corbisier, P., van der Lelie, D., Borremans, B., Provoost, A., de Lorenzo, V., Brown, N. L., Lloyd, J. R., Hobman, J. L., Cs¨oregi, E., Johansson, G., & Mattiasson, B. (1999). Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica Chimica Acta, 387, 235-244. DOI: 10.1016/s0003-2670(98)00725-9.10.1016/S0003-2670(98)00725-9Search in Google Scholar
Dahl, A. L., Sanseverino, J., & Gaillard, J. F. (2011). Bacterial bioreporter detects mercury in the presence of excess EDTA. Environmental Chemistry, 8, 552-560. DOI: 10.1071/en11043.10.1071/EN11043Search in Google Scholar
Deryabin, D. G., & Aleshina, E. S. (2008). Effect of salts on luminescence of natural and recombinant luminescent bacterial biosensors. Applied Biochemistry and Microbiology, 44, 292-296. Environmental Protection Agency (2009). Basic information about mercury (inorganic) in drinking water. EPA 816-F-09-004. Washington, D.C., USA.Search in Google Scholar
Ivask, A., Green, T., Polyak, B., Mor, A., Kahru, A., Virta, M., & Marks, R. (2007). Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosensors and Bioelectronics, 22, 1396-1402. DOI: 10.1016/j.bios.2006.06.019. 10.1016/j.bios.2006.06.019Search in Google Scholar
Gerasimova, M. A., & Kudryasheva, N. S. (2002). Effects of potassium halides on bacterial bioluminescence. Journal of Photochemistry and Photobiology B: Biology, 66, 218-222. DOI: 10.1016/s1011-1344(02)00240-3.10.1016/S1011-1344(02)00240-3Search in Google Scholar
Glass, K. A., Loeffelholz, J. M., Ford, J. P., & Doyle, M. P. (1992). Fate of Escherichia coli 0157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Applied and Environmental Microbiology, 58, 2513-2516.10.1128/aem.58.8.2513-2516.1992Search in Google Scholar PubMed PubMed Central
Golding, G. R., Sparling, R., & Kelly, A. C. (2008). Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Applied and Environmental Microbiology, 74, 667-665. DOI: 10.1128/aem.00717-07.10.1128/AEM.00717-07Search in Google Scholar PubMed PubMed Central
Hakkila, K., Green, T., Leskinen, P., Ivask, A., Marks, R., & Virta, M. (2004). Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibreoptic tips. Journal of Applied Toxicology, 24, 333-342. DOI: 10.1002/jat.1020.10.1002/jat.1020Search in Google Scholar PubMed
Hidalgo, G., Chen, X. C., Hay, A. G., & Lion, L. W. (2010). Curli produced by Escherichia coli PHL628 provide protection from Hg(II). Applied and Environmental Microbiology, 76, 6939-6941. DOI: 10.1128/aem.01254-10.10.1128/AEM.01254-10Search in Google Scholar
How, J. A., Lim, J. Z. R., Goh, D. J.W., Ng,W. C., Oon, J. S. H., Lee, K. C., Lee, C. H., & Ling, M. H. T. (2013). Adaptation of Escherichia coli ATCC 8739 to 11% NaCl. Dataset Papers in Biology, 2013, 219095. DOI: 10.7167/2013/219095.10.7167/2013/219095Search in Google Scholar
Kushner, D. J. (1968). Halophilic bacteria. Advances in Applied Microbiology, 10, 73-99. DOI: 10.1016/s0065-2164(08)70189- Search in Google Scholar
Ma, H. L.,Wu, X. H., Yang, M.,Wang, J. M.,Wang, J. M., & Wang, J. D. (2014). Effects of fluoride on bacterial growth and its gene/protein expression. Chemosphere, 100, 190-193. DOI: 10.1016/j.chemosphere.2013.11.032.10.1016/j.chemosphere.2013.11.032Search in Google Scholar
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed). New York, NY, USA: Cold Spring Harbor Laboratory Press.Search in Google Scholar
Selifonova, O., Burlage, R., & Barkay, T. (1993). Bioluminescent sensors for detection of bioavailable Hg(II)in the environment. Applied and Environmental Microbiology, 59, 3083-3090.10.1128/aem.59.9.3083-3090.1993Search in Google Scholar
Selifonova, O. V., & Barkay, T. (1994). Role of Na+ in transport of Hg2+ and induction of the Tn2l mer Operon. Applied and Environmental Microbiology, 60, 3503-3507.10.1128/aem.60.10.3503-3507.1994Search in Google Scholar
Shi, W. J., Menn, F. M., Xu, T. T., Zhuang, Z. T., Beasley, C., Ripp, S., Zhuang, J., Layton, A. C., & Sayler, G. S. (2014). C60 reduces the bioavailability of mercury in aqueous solutions. Chemosphere, 95, 324-328. DOI: 10.1016/j.chemosphere.2013.09.027.10.1016/j.chemosphere.2013.09.027Search in Google Scholar
Troussellier, M., Bonnefont, J. L., Courties, C., Derrien, A., Dupray, E., Gauthier, M., Gourmelon, M., Joux, F., Lebaron, P., Martin, Y., & Pommepuy, M. (1998). Responses of enteric bacteria to environmental stresses in seawater. Oceanologica Acta, 21, 965-981. DOI: 10.1016/s0399-1784(99)80019-x.10.1016/S0399-1784(99)80019-XSearch in Google Scholar
Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A. P., & Heringa, M. B. (2011). Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources. Analytical and Bioanalytical Chemistry, 400, 915-929. DOI: 10.1007/s00216-010-4372-6.10.1007/s00216-010-4372-6Search in Google Scholar PubMed PubMed Central
Winslow, C. E. A., Walker, H. H., & Sutermeister, M. (1932). The influence of aeration and of sodium chloride upon the growth curve of bacteria in various media. Journal of Bacteriology, 24, 185-208. 10.1128/jb.24.3.185-208.1932Search in Google Scholar PubMed PubMed Central
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?