Startseite Evaluation of the in vitro activity of ceragenins against Trichomonas vaginalis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluation of the in vitro activity of ceragenins against Trichomonas vaginalis

  • Zubeyde Akin Polat EMAIL logo , Ali Cetin und Poul B. Savage
Veröffentlicht/Copyright: 30. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Trichomonosis, caused by the protozoan parasite Trichomonas vaginalis, is a curable sexually transmitted disease that is most commonly encountered worldwide. Increasing importance of trichomoniasis and emerging of resistance against metronidazole lead to search for alternative drugs with different mode of activity. The purpose of this study was to determine in vitro activity of ceragenins (CSA-13, CSA-44, CSA-13, and CSA-138) against the metronidazole-susceptible (ATCC 30001) and metronidazole-resistant (ATCC 50138) strains of T. vaginalis. The effective concentrations were evaluated using two strains of T. vaginalis with different metronidazole susceptibilities (ATCC 30001 and ATCC 50138) in the presence of dilution series of ceragenins in 24-well microtitre assays. Overall, all the ceragenins killed the metronidazole-susceptible (ATCC 30001) and metronidazole-resistant (ATCC 50138) strains of T. vaginalis (p>0.05). With regard to the their effects against the studied strains of T. vaginalis, in order of effectiveness, overall, the ceragenins ordered as CSA-13 (the most effective), CSA-131 and CSA-138 (effective similarly), and CSA-44 (the least effective) (p<0.05). All of the ceragenins reduced the trophozoite numbers of both of studied strains of T. vaginalis with a time- and dose- dependent manner (p<0.05). Although all of the study ceragenins, CSA-13, CSA-44, CSA-13, and CSA-138, killed the studied strains of T. vaginalis. CSA-13 is the leading ceragenin as the most effective anti-trichomonas compound, followed by CSA-131 and CSA-138. They have a potential to have a place in the armemantarium of gynecologic and urologic practice for the management of sexually transmitted diseases.

References

Arthan D., Sithiprom S., Thima K., Limmatvatirat C., Chavalitshewinkoon-Petmitr P., Svasti J. 2008. Inhibitory effects of Thai plants beta-glycosides on Trichomonas vaginalis. Parasitology Research 103, 443–448. DOI: 10.1007/s00436-008-0996-210.1007/s00436-008-0996-2Suche in Google Scholar PubMed

Bozkurt-Guzel C., Savage P.B., Akcali A., Ozbek-Celik B. 2014. Potential synergy activity of the novel ceragenin, CSA-13, against carbapenem-resistant Acinetobacter baumannii strains isolated from bacteremia patients. BioMed Research International DOI: 10.1155/2014/71027310.1155/2014/710273Suche in Google Scholar PubMed PubMed Central

Chin J.N., Rybak M.J., Cheung C.M., Savage P.B. 2007. Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 51, 1268–1273. DOI: 10.1128/AAC.01325-0610.1128/AAC.01325-06Suche in Google Scholar PubMed PubMed Central

Epand R.F., Pollard J.E., Wright J.O., Savage P.B., Epand R.M. 2010. Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrobial Agents and Chemotherapy 54, 3708–3713. DOI: 10.1128/AAC.00380-1010.1128/AAC.00380-10Suche in Google Scholar PubMed PubMed Central

Epand R.M., Epand R.F., Savage P.B.. 2008. Ceragenins (cationic steroid compounds), a novel class of antimicrobial agents. Drug News & Perspectives 21, 307–311. DOI: 10.1358/dnp. 2008.21.6.124682910.1358/dnp. 2008.21.6.1246829Suche in Google Scholar

Fastring D.R., Amedee A., Gatski M., Clark R.A., Mena L.A., Levison J., Schmidt N., Rice J., Gustat J., Kissinger P. 2014. Co-occurrence of Trichomonas vaginalis and bacterial vaginosis and vaginal shedding of HIV-1 RNA. Sexually Transmitted Diseases, 41, 173–179. DOI: 10.1097/OLQ.000000000000008910.1097/OLQ.0000000000000089Suche in Google Scholar PubMed

Figueroa-Angulo E.E., Rendón-Gandarilla F.J., Puente-Rivera J., Calla-Choque J.S., Cárdenas-Guerra R.E., Ortega-López J., Quintas-Granados L.I., Alvarez-Sánchez M.E., Arroyo R. 2012. The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes and Infection, 14, 1411– 1427. DOI: 10.1016/j.micinf.2012.09.00410.1016/j.micinf.2012.09.004Suche in Google Scholar PubMed

Frasson A.P., Santos O., Duarte M., da Silva Trentin D., Giordani R.B., da Silva A.G., da Silva M.V., Tasca T., Macedo A.J. 2012. First report of anti-Trichomonas vaginalis activity of the medicinal plant Polygala decumbens from the Brazilian semi-arid region, Caatinga. Parasitology Research 110, 2581– 2587. DOI: 10.1007/s00436-011-2787-410.1007/s00436-011-2787-4Suche in Google Scholar PubMed

Hobbs M.M., Lapple D.M., Lawing L.F., Schwebke J.R., Cohen M.S., Swygard H., Atashili J., Leone P.A., Miller W.C., Seña A.C. 2006. Methods for detection of Trichomonas vaginalis in the male partners of infected women: implications for control of trichomoniasis. Journal Clinical Microbiology, 44, 3994– 3999. DOI: 10.1128/JCM.00952-0610.1128/JCM.00952-06Suche in Google Scholar PubMed PubMed Central

Ibrahim A.N. 2013. Comparison of in vitro activity of metronidazole and garlic-based product (Tomex®) on Trichomonas vaginalis. Parasitology Research 112:2063–2067. DOI: 10.1007/s00436013-3367-610.1007/s00436-013-3367-6Suche in Google Scholar PubMed

Innocente A.M., de Brum Vieira P., Frasson A.P., Casanova B.B., Gosmann G., Gnoatto S.C., Tasca T. 2014. Anti-Trichomonas vaginalis activity from triterpenoid derivatives. Parasitology Research 113, 2933–2940. DOI: 10.1007/s00436-014-3955-010.1007/s00436-014-3955-0Suche in Google Scholar PubMed

Kirkcaldy R.D., Augostini P., Asbel L.E., Bernstein K.T., Kerani R.P., Mettenbrink C.J., Pathela P., Schwebke J.R., Secor W.E., Workowski K.A., Davis D., Braxton J., Weinstock H.S. 2012. Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD Surveillance Network, 2009–2010. Emerging Infectious Diseases 18:939–943. DOI: 10.3201/eid1806.11159010.3201/eid1806.111590Suche in Google Scholar PubMed PubMed Central

Kissinger P., Amedee A., Clark R.A., Dumestre J., Theall K.P., Myers L., Hagensee M.E., Farley T.A., Martin D.H. 2009. Trichomonas vaginalis treatment reduces vaginal HIV-1 shedding. Sexually Transmitted Diseases, 36, 11–16. DOI: 10.1097/OLQ.0b013e318186decf10.1097/OLQ.0b013e318186decfSuche in Google Scholar PubMed PubMed Central

Lai X.Z., Feng Y., Pollard J., Chin J.N., Rybak M.J., Bucki R., Epand R.F., Epand R.M., Savage P.B. 2008. Ceragenins: cholic acid-based mimics of antimicrobial peptides. Accounts of Chemical Research 41, 1233–1240. DOI: 10.1021/ar700270t10.1021/ar700270tSuche in Google Scholar PubMed

Lara D., Feng Y., Bader J., Savage P.B., Maldonado R.A. 2010. Antitrypanosomatid activity of ceragenins. Journal of Parasitology 96: 638–642. DOI: 10.1645/GE-2329.110.1645/GE-2329.1Suche in Google Scholar PubMed PubMed Central

Leitsch D., Burgess A.G., Dunn L.A., Krauer K.G., Tan K., Duchêne M., Upcroft P., Eckmann L., Upcroft J.A. 2011. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. AntimicroEffect of ceragenins against T. vaginalis bial Agents and Chemotherapy 66, 1756–1765. DOI: 10. 1093/jac/dkr19210. 1093/jac/dkr192Suche in Google Scholar

Munson K.L., Napierala M., Munson E., Schell R.F., Kramme T., Miller C., Hryciuk J.E. 2013. Screening of male patients for Trichomonas vaginalis with transcription-mediated amplification in a community with a high prevalence of sexually transmitted infection. Journal Clinical Microbiology, 51, 101–104. DOI: 10.1128/JCM.02526-1210.1128/JCM.02526-12Suche in Google Scholar PubMed PubMed Central

Narcisi E.M., Secor W.E. 1996. In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. Antimicrobial Agents and Chemotherapy 40, 1121–112510.1128/AAC.40.5.1121Suche in Google Scholar PubMed PubMed Central

Pal D., Banerjee S., Cui J., Schwartz A., Ghosh S.K., Samuelson J. 2009. Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases). Antimicrobial Agents and Chemotherapy 53, 458–464. DOI: 10.1128/AAC.009090810.1128/AAC.00909-08Suche in Google Scholar PubMed PubMed Central

Pollard J.E., Snarr J., Chaudhary V., Jennings J.D., Shaw H., Christiansen B., Wright J., Jia W., Bishop R.E., Savage P.B. 2012. In vitro evaluation of the potential for resistance development to ceragenin CSA-13. Antimicrobial Agents and Chemotherapy 67:2665–2672. DOI: 10.1093/jac/dks27610.1093/jac/dks276Suche in Google Scholar PubMed PubMed Central

Rocha D.A., de Andrade Rosa I., Urbina J.A., de Souza W., Benchimol M. 2014. The effect of 3-(biphenyl-4-yl)-3-hydoxyquinuclidine (BPQ-OH) and metronidazole on Trichomonas vaginalis: a comparative study. Parasitology Research 113, 2185–2197. DOI: 10.1007/s00436-014-3871-310.1007/s00436-014-3871-3Suche in Google Scholar PubMed

Rocha T.D., de Brum Vieira P., Gnoatto S.C., Tasca T., Gosmann G. (2012) Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitology Research 110, 2551–2556. DOI: 10.1007/s00436-011-2798-110.1007/s00436-011-2798-1Suche in Google Scholar PubMed

Savage P.B., Li C., Taotafa U., Ding B., Guan Q. 2002. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiology Letters 217, 1–7. DOI: 10.1111/j.1574-6968.2002.tb11448.x10.1111/j.1574–6968.2002.tb11448.xSuche in Google Scholar

Seña A.C., Bachmann L.H., Hobbs M.M. 2014. Persistent and recurrent Trichomonas vaginalis infections: epidemiology, treatment and management considerations. Expert Review of Anti-infective Therapy 12, 673–685. DOI: 10.1586/14787210.2014.88744010.1586/14787210.2014.887440Suche in Google Scholar PubMed

Sherrard J., Ison C., Moody J., Wainwright E., Wilson J., Sullivan A. 2014. United Kingdom National Guideline on the Management of Trichomonas vaginalis. International Journal of STD & AIDS, 25, 541–549. DOI: 10.1177/095646241452594710.1177/0956462414525947Suche in Google Scholar PubMed

Silver B.J., Guy R.J., Kaldor J.M., Jamil M.S., Rumbold A.R. 2014. Trichomonas vaginalis as a cause of perinatal morbidity: a systematic review and meta-analysis. Sexually Transmitted Diseases, 41, 369–376. DOI: 10.1097/OLQ.000000000000013410.1097/OLQ.0000000000000134Suche in Google Scholar PubMed

Smith L.M., Wang M., Zangwill K., Yeh S. 2002. Trichomonas vaginalis infection in a premature newborn. Journal of Perinatology, 22, 502–503. DOI:10.1038/sj.jp.721071410.1038/sj.jp.7210714Suche in Google Scholar PubMed

Sobel J.D. 2014. Trichomoniasis. In: UpToDate, Post TW (Ed), Up-ToDate, Waltham, MA. (Accessed on June, 2014)Suche in Google Scholar

WHO 2008. World Health Organization – global prevalence and incidence of selected curable sexually transmitted infections. WHO, Geneva SwitzerlandSuche in Google Scholar

Received: 2015-3-11
Revised: 2015-10-10
Accepted: 2015-12-23
Published Online: 2016-3-30
Published in Print: 2016-6-1

© W. Stefański Institute of Parasitology, PAS

Artikel in diesem Heft

  1. Research Article
  2. Human Trichinella infection outbreaks in Slovakia, 1980-2008
  3. Research Article
  4. Immune responses in rats and sheep induced by a DNA vaccine containing the phosphoglycerate kinase gene of Fasciola hepatica and liver fluke infection
  5. Research Article
  6. Isolation and identification of Acanthamoeba spp. from thermal swimming pools and spas in Southern Brazil
  7. Research Article
  8. First report and spore ultrastructure of Vairimorpha plodiae (Opisthokonta: Microspora) from Plodia interpunctella (Lepidoptera: Pyralidae) in Turkey
  9. Research Article
  10. Evaluation of immuno diagnostic assay for the exposure of stage specific filarial infection
  11. Research Article
  12. Morphological, molecular and developmental characterization of the thelastomatid nematode Thelastoma bulhoesi (de Magalhães, 1900) (Oxyuridomorpha: Thelastomatidae) parasite of Periplaneta americana (Linnaeus, 1758) (Blattodea: Blattidae) in Japan
  13. Research Article
  14. Wild boar (Sus scrofa) – reservoir host of Toxoplasma gondii, Neospora caninum and Anaplasma phagocytophilum in Slovakia
  15. Research Article
  16. Prevalence of Giardia spp. in young dogs using a combination of two diagnostic methods
  17. Research Article
  18. CIAS detection of Fasciola hepatica/F. gigantica intermediate forms in bovines from Bangladesh
  19. Research Article
  20. Redescription of two species of cystidicolid nematodes (Spirurina: Cystidicolidae) from Notopterus notopterus (Osteichthyes) in Thailand
  21. Research Article
  22. Paradiplozoon iraqensis n. sp. (Monogenea: Diplozoinae) from Cyprinion macrostomum (Cyprinidae) in the Tigris River, Iraq
  23. Research Article
  24. Genetic diversity of Diplomonadida in fish of the genus Coregonus from Southeastern Siberia
  25. Research Article
  26. Dynamics and effects of Ligula intestinalis (L.) infection in the native fish Barbus callensis Valenciennes, 1842 in Algeria
  27. Research Article
  28. Bioinformatics analysis and expression of a novel protein ROP48 in Toxoplasma gondii
  29. Research Article
  30. Vertical transmission of Trypanosoma evansi in dromedary camels and studies on fetal pathology, diagnosis and treatment
  31. Research Article
  32. Molecular detection and prevalence of Theileria equi and Babesia caballi in horses of central Balkan
  33. Research Article
  34. Two new species of the genus Pterygosoma (Acariformes: Pterygosomatidae) parasitizing agamid lizards (Sauria: Agamidae) from the Indian subcontinent
  35. Research Article
  36. A new species of Spauligodon (Nematoda; Oxyuroidea; Pharyngodonide) and other Helminths in Ptychozoon Kuhli (Squamata: Gekkonidae) from East Malaysia
  37. Research Article
  38. Molecular characterization and phylogeny of some mazocraeidean monogeneans from carangid fish
  39. Research Article
  40. Validation of the TrichinEasy® digestion system for the detection of Anisakidae larvae in fish products
  41. Research Article
  42. Evaluation of the in vitro activity of ceragenins against Trichomonas vaginalis
  43. Research Article
  44. Prevalence and genotypes of Enterocytozoon bieneusi in sika deer in Jilin province, Northeastern China
  45. Research Article
  46. Endoparasitic fauna of red foxes (Vulpes vulpes) and golden jackals (Canis aureus) in Serbia
  47. Research Article
  48. Molecular characterization of Giardia duodenalis from white yaks in China
  49. Research Article
  50. Seroprevalence of Toxoplasma gondii among turkeys on family farms in the state of Northeastern Brazil
  51. Research Article
  52. First report of molecular identification of Cystoisospora suis in piglets with lethal diarrhea in Japan
  53. Research Article
  54. Determination of PCT on admission is a useful tool for the assessment of disease severity in travelers with imported Plasmodium falciparum malaria
  55. Research Article
  56. Dynamics of Theileria orientalis genotype population in cattle in a year-round grazing system
  57. Research Article
  58. A new isosporoid coccidia (Apicomplexa: Eimeriidae)from the southern house wren Troglodytes musculus Naumann, 1823 (Passeriformes: Troglodytidae) from Brazil
  59. Research Article
  60. Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminut a reveals their immunogenic properties and the presence of new E-S proteins in cestodes
Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ap-2016-0049/html
Button zum nach oben scrollen