Home Medicine Determination of PCT on admission is a useful tool for the assessment of disease severity in travelers with imported Plasmodium falciparum malaria
Article
Licensed
Unlicensed Requires Authentication

Determination of PCT on admission is a useful tool for the assessment of disease severity in travelers with imported Plasmodium falciparum malaria

  • Elda Righi EMAIL logo , Maria Merelli , Alessandra Arzese , Paola Della Siega , Claudio Scarparo and Matteo Bassetti
Published/Copyright: March 30, 2016
Become an author with De Gruyter Brill

Abstract

Procalcitonin (PCT) and C-reactive protein (CRP) may be useful to predict complicated forms of malaria. A total of 30 consecutive travelers diagnosed with Plasmodium falciparum malaria over a two-year period were included in the study. Patients with complicated Plasmodium falciparum malaria showed higher levels of parasitemia (P = 0.0001), PCT (P = 0.0018), CRP (P = 0.0005), bilirubinemia (P = 0.004), and a lower platelet count (P<0.0001) compared with patients with uncomplicated forms. PCT levels above 5 ng/mL showed the highest value of specificity (0.86) and positive predictive factor (0.67) among other parameters, and equal sensitivity (0.67) was displayed by CRP levels above 150 mg/dl. None of the patients with complicated malaria showed PCT levels within normal limits (<0.5 ng/ml). Both PCT and CRP correlated with parasitemia (P<0.001) and showed areas under ROC curve of 0.83. At multivariate analysis, only PCT was associated with an increased risk of complicated malaria (OR 8.2, IC 95% 1.2–57.2, P = 0.03). The determination of PCT on admission showed better results compared to CRP, platelet count, and bilirubinemia and can be useful in non-endemic areas for the initial clinical assessment of disease severity in travelers with Plasmodium falciparum malaria.


Elda Righi and Maria Merelli contributed equally to this work and should be consider as first co-authors


References

Ansar W., Habib S.K., Roy S., Mandal C., Mandal C. 2009. Unraveling the C-reactive protein complement-cascade in destruction of red blood cells: potential pathological implications in Plasmodium falciparum malaria. Celluar Physiology and Biochemistry, 23, 175–190. DOI: 10.1159/00020410610.1159/000204106Search in Google Scholar PubMed

Anstey N.M., Price R.N. 2007. Improving case definitions for severe malaria. PLoS Medicine, 4:e267 DOI: 10.1371/journal.pmed. 004026710.1371/journal.pmed.0040267Search in Google Scholar PubMed PubMed Central

Bailey J.W., Williams J., Bain B.J., Parker-Williams J., Chiodini P.L. 2013. General Haematology Task Force of the British Committee for Standards in H. Guideline: the laboratory diagnosis of malaria. General Haematology Task Force of the British Committee for Standards in Haematology. Brish Journal of Haematology, 163, 573–580. DOI:10.1111/bjh.1257210.1111/bjh.12572Search in Google Scholar PubMed

Black S., Kushner I., Samols D. 2004 C-reactive Protein. The Journal of Biological Chemistry, 279, 48487–48490. DOI: 10.1074/jbc.r40002520010.1074/jbc.R400025200Search in Google Scholar PubMed

Braun N., Marfo Y., Von Gartner C., Burchard G.D., Zipfel P.F., Browne N.E.N., Fleischer B., Broker B. 2003. CTLA-4 positive T cells in contrast to procalcitonin plasma levels discriminate between severe and uncomplicated Plasmodium falciparum malaria in Ghanaian children. Tropical Medicine and International Health, 8, 1018–1024. DOI: 10.1046/ j.1360-2276.2003.01128.x10.1046/j.1360-2276.2003.01128.xSearch in Google Scholar PubMed

Center for Disease Control and Prevention (CDC). 2015. Malaria – Diagnosis and Tratment in the US. Rapid diagnostic tests, http://www.cdc.gov/malaria/diagnosis_treatment/rdt.html. Accessed 18 November 2015Search in Google Scholar

Chiwakata C.B., Manegold C., Bonicke L., Waase I., Julch C., Diet-rich M. 2001. Procalcitonin as a parameter of disease severity and risk of mortality in patients with Plasmodium falciparum malaria. Journal of Infectious Diseases,183, 1161– 1164. DOI:10.1086/31928310.1086/319283Search in Google Scholar PubMed

Erdman L.K., Dhabangi A., Musoke C., Conroy A.L., Hawkes M., Higgins S., Rajwans N., Wolofsky K.T., Streiner D.L., Liles W.C., Cserti-Gazdewich C.M., Kain K.C. 2011. Combinations of host biomarkers predict mortality among Ugandan children with severe malaria: a retrospective case-control study. PLoS One, 6, e17440. DOI: 10.1371/journal.pone.001744010.1371/journal.pone.0017440Search in Google Scholar PubMed PubMed Central

Guide for the use of procalcitonin (PCT) in diagnosis and monitoring of sepsis. http://www.procalcitonin.com/pct-guide/pdf/200809/PCT_Guide_EN.pdf. April 2008Search in Google Scholar

Hesselink D.A., Burgerhart J.S., Bosmans-Timmerarends H., Petit P., van Genderen P.J. 2009. Procalcitonin as a biomarker for severe Plasmodium falciparum disease: a critical appraisal of a semi-quantitative point-of-care test in a cohort of travellers with imported malaria. Malaria Journal, 8, 206. DOI: 10.1186/1475-2875-8-20610.1186/1475-2875-8-206Search in Google Scholar PubMed PubMed Central

Hurt N., Smith T., Teuscher T., Tanner M. 1994. Do high levels of C-reactive protein in Tanzanian children indicate malaria morbidity. Clinical and Diagnostic Laboratory Immunology, 1, 437–444. DOI: 10.1016/0035-9203(94)90287-910.1128/cdli.1.4.437-444.1994Search in Google Scholar PubMed PubMed Central

Marnell L., Mold C., Du Clos T.W. 2005. C-reactive protein: ligands, receptors and role in inflammation. Clinical Immunology, 117, 104–111 DOI: 10.1016/j.clim.2005.08.00410.1016/j.clim.2005.08.004Search in Google Scholar PubMed

Marsh K., Forster D., Waruiru C., Mwangi I., Winstanley M., Marsh V., Newton C., Winstanley P., Warn P., Peshu N. 1995. Indicators of life-threatening malaria in African children. New England Journal of Medicine, 332,1399–1404 DOI: 10.1056/ nejm19950525332210210.1056/NEJM199505253322102Search in Google Scholar

McGuire W., D’Alessandro U., Olaleye B.O., Thomson M.C., Lange-rock P., Greenwood B.M., Kwiatkowski D. 1996. C-reactive protein and haptoglobin in the evaluation of a community-based malaria control programme. Transactions of the Royal Society of Tropical Medicine and Hygiene, 90, 10–14. DOI: 10.1016/s0035-9203(96)90461-710.1016/S0035-9203(96)90461-7Search in Google Scholar

Simon L., Gauvin F., Amre D.K., Saint-Louis P., Lacroix J. 2004. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clinical Infectious Diseases, 39, 206–217 DOI: 10.1086/ 42199710.1086/421997Search in Google Scholar

Tangpukdee N., Krudsood S., Kano S., Wilairatana P. 2012. Falciparum malaria parasitemia index for predicting severe malaria. International Journal of Laboratory Hematology, 34, 320–327. DOI: 10.1111/j.1751-553X.2011.0139810.1111/j.1751-553X.2011.01398.xSearch in Google Scholar

te Witt R., van Wolfswinkel M.E., Petit P.L., van Hellemond J.J., Koelewijn R., van Belkum A., van Genderen P.J. 2010. Neopterin and procalcitonin are suitable biomarkers for exclusion of severe Plasmodium falciparum disease at the initial clinical assessment of travellers with imported malaria. Malaria Journal, 9, 255. DOI:10.1186/14752875-9-25510.1186/1475-2875-9-255Search in Google Scholar

van Genderen P.J., van der Meer I.M., Consten J., Petit P.L., van Gool T., Overbosch D. 2005. Evaluation of plasma lactate as a parameter for disease severity on admission in travelers with Plasmodium falciparum malaria. Journal of Travel Medicine, 12, 261–264. DOI: 10.2310/7060.2005.1250410.2310/7060.2005.12504Search in Google Scholar

Wacker C., Prkno A., Brunkhorst F.M., Schlattmann P. 2013. Pro-calcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infectious Diseases, 13, 426–435 DOI :10.1016/s1473-3099(12)70323-710.1016/S1473-3099(12)70323-7Search in Google Scholar

Walther M., Tongren J.E., Andrews L., et al. 2005. Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity, 23, 287–296. DOI: 10.1016/j.immuni. 2005.08.00610.1016/j.immuni.2005.08.006Search in Google Scholar

World Health Organization. 2000. Severe falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, S1–S90. DOI:10.1016/s0035-9203(00)90300-610.1016/S0035-9203(00)90300-6Search in Google Scholar

World Health Organization. 2010. Guidelines for the treatment of malaria 2nd edition. Geneva: World Health Organization March 2010, 35Search in Google Scholar

Zhang R., Becnel L., Li M., Chen C., Yao Q. 2006. C-reactive protein impairs human CD14+ monocyte-derived dendritic cell differentiation, maturation and function. European Journal of Immunology, 36, 2993–3006. DOI: 10.1002/eji.20063520710.1002/eji.200635207Search in Google Scholar PubMed

Zhong W., Zen Q., Tebo J., Schlottmann K., Coggeshall M., Mortensen R.F. 1998. Effect of human C-reactive protein on chemokine and chemotactic factor-induced neutrophil chemotaxis and signaling. Journal of Immunology, 161, 2533–2540. DOI: 10.4049/jimmunol.168.3.141310.4049/jimmunol.168.3.1413Search in Google Scholar PubMed

Received: 2015-7-17
Revised: 2015-12-28
Accepted: 2016-1-20
Published Online: 2016-3-30
Published in Print: 2016-6-1

© W. Stefański Institute of Parasitology, PAS

Articles in the same Issue

  1. Research Article
  2. Human Trichinella infection outbreaks in Slovakia, 1980-2008
  3. Research Article
  4. Immune responses in rats and sheep induced by a DNA vaccine containing the phosphoglycerate kinase gene of Fasciola hepatica and liver fluke infection
  5. Research Article
  6. Isolation and identification of Acanthamoeba spp. from thermal swimming pools and spas in Southern Brazil
  7. Research Article
  8. First report and spore ultrastructure of Vairimorpha plodiae (Opisthokonta: Microspora) from Plodia interpunctella (Lepidoptera: Pyralidae) in Turkey
  9. Research Article
  10. Evaluation of immuno diagnostic assay for the exposure of stage specific filarial infection
  11. Research Article
  12. Morphological, molecular and developmental characterization of the thelastomatid nematode Thelastoma bulhoesi (de Magalhães, 1900) (Oxyuridomorpha: Thelastomatidae) parasite of Periplaneta americana (Linnaeus, 1758) (Blattodea: Blattidae) in Japan
  13. Research Article
  14. Wild boar (Sus scrofa) – reservoir host of Toxoplasma gondii, Neospora caninum and Anaplasma phagocytophilum in Slovakia
  15. Research Article
  16. Prevalence of Giardia spp. in young dogs using a combination of two diagnostic methods
  17. Research Article
  18. CIAS detection of Fasciola hepatica/F. gigantica intermediate forms in bovines from Bangladesh
  19. Research Article
  20. Redescription of two species of cystidicolid nematodes (Spirurina: Cystidicolidae) from Notopterus notopterus (Osteichthyes) in Thailand
  21. Research Article
  22. Paradiplozoon iraqensis n. sp. (Monogenea: Diplozoinae) from Cyprinion macrostomum (Cyprinidae) in the Tigris River, Iraq
  23. Research Article
  24. Genetic diversity of Diplomonadida in fish of the genus Coregonus from Southeastern Siberia
  25. Research Article
  26. Dynamics and effects of Ligula intestinalis (L.) infection in the native fish Barbus callensis Valenciennes, 1842 in Algeria
  27. Research Article
  28. Bioinformatics analysis and expression of a novel protein ROP48 in Toxoplasma gondii
  29. Research Article
  30. Vertical transmission of Trypanosoma evansi in dromedary camels and studies on fetal pathology, diagnosis and treatment
  31. Research Article
  32. Molecular detection and prevalence of Theileria equi and Babesia caballi in horses of central Balkan
  33. Research Article
  34. Two new species of the genus Pterygosoma (Acariformes: Pterygosomatidae) parasitizing agamid lizards (Sauria: Agamidae) from the Indian subcontinent
  35. Research Article
  36. A new species of Spauligodon (Nematoda; Oxyuroidea; Pharyngodonide) and other Helminths in Ptychozoon Kuhli (Squamata: Gekkonidae) from East Malaysia
  37. Research Article
  38. Molecular characterization and phylogeny of some mazocraeidean monogeneans from carangid fish
  39. Research Article
  40. Validation of the TrichinEasy® digestion system for the detection of Anisakidae larvae in fish products
  41. Research Article
  42. Evaluation of the in vitro activity of ceragenins against Trichomonas vaginalis
  43. Research Article
  44. Prevalence and genotypes of Enterocytozoon bieneusi in sika deer in Jilin province, Northeastern China
  45. Research Article
  46. Endoparasitic fauna of red foxes (Vulpes vulpes) and golden jackals (Canis aureus) in Serbia
  47. Research Article
  48. Molecular characterization of Giardia duodenalis from white yaks in China
  49. Research Article
  50. Seroprevalence of Toxoplasma gondii among turkeys on family farms in the state of Northeastern Brazil
  51. Research Article
  52. First report of molecular identification of Cystoisospora suis in piglets with lethal diarrhea in Japan
  53. Research Article
  54. Determination of PCT on admission is a useful tool for the assessment of disease severity in travelers with imported Plasmodium falciparum malaria
  55. Research Article
  56. Dynamics of Theileria orientalis genotype population in cattle in a year-round grazing system
  57. Research Article
  58. A new isosporoid coccidia (Apicomplexa: Eimeriidae)from the southern house wren Troglodytes musculus Naumann, 1823 (Passeriformes: Troglodytidae) from Brazil
  59. Research Article
  60. Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminut a reveals their immunogenic properties and the presence of new E-S proteins in cestodes
Downloaded on 24.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ap-2016-0055/html
Scroll to top button