Home Dynamics and effects of Ligula intestinalis (L.) infection in the native fish Barbus callensis Valenciennes, 1842 in Algeria
Article
Licensed
Unlicensed Requires Authentication

Dynamics and effects of Ligula intestinalis (L.) infection in the native fish Barbus callensis Valenciennes, 1842 in Algeria

  • Sonia Ould Rouis EMAIL logo , Abdelhalim Ould Rouis , Henri J. Dumont , Kit Magellan and Abdeslem Arab
Published/Copyright: March 30, 2016
Become an author with De Gruyter Brill

Abstract

The dynamics of the emergence, duration, and decline phases in epizootic cycles are well known for humans and some crops, but they are poorly understood for host–parasite systems in the wild. Parasites may be particularly insidious as they are often introduced unintentionally, simultaneously with their hosts, and later transferred to species in the new location. Here we investigate the epizootic dynamics of the tapeworm Ligula intestinalis in the Hamiz reservoir, Algeria, and explore its effects on the cyprinid fish Barbus callensis. Regular sampling was conducted from October 2005 to February 2008 with intermittent surveys carried out until 2010. Five percent of the 566 specimens of B. callensis that were caught were infected, with the maximum number of parasites found in spring. There was no obvious difference in weight between uninfected fish and infected ones, and infection did not affect fish condition. However, infected fish were significantly longer than uninfected fish and had inhibited gonad development. The proportion of infected fish caught was significantly higher in year 1 and by the second winter, infection collapsed to zero. The Ligula infection thus appeared to have minimal ecological effects and be of a temporary nature, thus exhibiting an epizootic cycle. Taken together, our data indicates that this infection declined or even failed during our study period. Failure may be due to the specific genetic strain of Ligula, but invasive carp may also have been influential in both the introduction and subsequent decline of this parasite.

Acknowledgements

– Our thanks go to the staff of Hamiz dam, for their help on the ground. We are grateful to Prof. J.C. Micha, (FUNDP/Namur, Belgium) and Dr E. Vreven, (Royal Museum for Central Africa (MRAC)/ Tervuren, Belgium) for their encouragement and support. We would like to thank an anonymous reviewer for useful suggestions that greatly improved our manuscript.

References

Avibase 2014. The World Bird Database (24 June 2003) http://avibase.bsc-eoc.orgSearch in Google Scholar

Barber I., Daniel Hoare D., Krause J. 2000. Effects of parasites on fish behaviour: a review and evolutionary perspective. Reviews in Fish Biology and Fisheries, 10, 131–16510.1023/A:1016658224470Search in Google Scholar

Barson M., Marshall B.E. 2003. The occurrence of the tapeworm, Ligula intestinalis (L.), in Barbus paludinosus from a small dam in Zimbabwe. African Journal of Aquatic Science, 28, 75–7810.2989/16085910309503782Search in Google Scholar

Bouzid-Lamine W. 2008. Genetic structure of Ligula intestinalis (Cestoda : Diphyllobothriidea), a parasite of freshwater fish. PhD Thesis, University of Toulouse III – Paul Sabatier, France, pp. 162. (In French)Search in Google Scholar

Bouzid W., Štefka J., Bahri-Sfar L., Peter Beerli P., Loot G., Lek S., Haddaoui N., Hypša V., Tomáš Scholz T., Dkhil-Abbes T., Meddour R., Ben Hassine O.K. 2013. Pathways of cryptic invasion in a fish parasite traced using coalescent analysis and epidemiological survey. Biological Invasions, 15, 1907–1923. DOI: 10.1007/s10530-013-0418-y10.1007/s10530-013-0418-y">10.1007/s10530-013-0418-ySearch in Google Scholar

Bouzid W., Stefka J., Hypsa V., Lek S., Scholz T., Legal L., Ben Has-sine O.K., Loot G. 2008. Geography and host specificity: Two forces behind the genetic structure of the freshwater fish parasite Ligula intestinalis (Cestoda: Diphyllobothriidae). International Journal for Parasitology, 38 (12), 1465–1479. DOI: 10.1016/j.ijpara.2008.03.00810.1016/j.ijpara.2008.03.008">10.1016/j.ijpara.2008.03.008Search in Google Scholar

Britton J.R., Pegg J. 2011. Ecology of European Barbel Barbus Bar-bus: Implications for River, Fishery, and Conservation Management. Reviews in Fisheries Science, 19, 321–330. DOI: 10.1080/10641262.2011.59988610.1080/10641262.2011.599886">10.1080/10641262.2011.599886Search in Google Scholar

Britton J.R., Jackson M.C., Harper D.M. 2009. Ligula intestinalis (Cestoda: Diphyllobothriidae) in Kenya: a field investigation into host specificity and behavioural alterations. Parasitology, 136, 1367–1373. DOI: 10.1017/S003118200999059X10.1017/S003118200999059X">10.1017/S003118200999059XSearch in Google Scholar

Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets Ecology on its own Terms: Margolis et al. Revised. Journal of Parasitology, 83, 575–583. DOI: 10.2307/328422710.2307/3284227">10.2307/3284227Search in Google Scholar

Carter V., Pierce R., Dufour S., Arme C., Hoole D. 2005. The tapeworm Ligula intestinalis (Cestoda: Pseudophyllidea) inhibits LH expression and puberty in its teleost host, Rutilus rutilus. Society for Reproduction and Fertility, 130, 939–945. DOI:10.1530/rep.1.0074210.1530/rep.1.00742">10.1530/rep.1.00742Search in Google Scholar

Cherghou S., Khodari M., Yaâkoubi F., Benadid M., Badri A. 2002. Contribution to the study of the diet of barbel, Barbus barbus callensis (Valenciennes, 1842) of a stream of the Middle Atlas (Morocco): wadi Boufekrane. Revue des sciences de l’eau, 15, 153–163. (In French)10.7202/705443arSearch in Google Scholar

Crivelli A.J. 1992. Are introduced species the right answer to the declining inland fisheries within the Mediterranean region? World Fisheries Congress, Abstract Bulletin, 143Search in Google Scholar

Dejen E., Vijverberg J., Sibbing F.A. 2006. Spatial and temporal variation of cestode infection and its effects on two small barbs (Barbus humilis and B. tanapelagius) in Lake Tana, Ethiopia. Hydrobiologia, 556, 109–117. DOI: 10.1007/s10750-0051187-010.1007/s10750-0051187-0">10.1007/s10750-0051187-0Search in Google Scholar

Dubinina M.N. 1980. Tapeworms, (Cestoda, Ligulidae) of the Fauna of the U.S.S.R. US Department of Commerce National Technical Information Service Springfield, USA, pp. vii + 320Search in Google Scholar

Dumont H.J. 1979. Limnologie van Sahara en Sahel. D Sci Thesis, University of Ghent, Belgium, pp. 557Search in Google Scholar

Dunn A.M., Torchin M.E., Hatcher M.J., Kotanen P.M., Blumenthal D.M., Byers J.E., Coon Courtney A.C., Frankel V.M., Holt R.D., Hufbauer R.A., Kanarek A.R., Schierenbeck K.A., Wolfe L.M., Perkins S.E. 2012. Indirect effects of parasites in invasions. Functional Ecology, 26, 1262–1274. DOI:10.1111/ j.1365-2435.2012.02041.x10.1111/ j.1365-2435.2012.02041.x">10.1111/ j.1365-2435.2012.02041.xSearch in Google Scholar

Dussart B. 1967. Copepods inland waters of Western Europe. I: calanoid and harpacticoid]. N. Boubée et Cie (eds.), Paris, pp. 1–500 (In French)Search in Google Scholar

Dussart B. 1969. Copepods inland waters of Western Europe. II: Cyclopoids and biology. N. Boubée et Cie (eds.), Paris, 1–292 pp. (In French)Search in Google Scholar

Ergonul M.B., Altindag A. 2005. The effects of Ligula intestinalis plerocercoids on the growth features of Tench, Tinca tinca. Turkish Journal of Veterinary and Animal Sciences, 29, 1337–1341Search in Google Scholar

Froese R., Pauly D. 2014. Fishbase. World Wide Web electronic publication. (version 06/2014). http://www.fishbase.orgSearch in Google Scholar

García N., Cuttelod A., Abdul Malak D. (ed) 2010. The Status and Distribution of Freshwater Biodiversity in Northern Africa. Gland, Switzerland, Cambridge, UK, and Malaga, Spain: IUCN ISBN: 978-2-8317-1271-0, pp. 141Search in Google Scholar

Georgiev B.B., Angelov A., Vasileva G.P., Sánchez M.I., Hortas F., Mutafchiev Y., Pankov P., Green A.J. 2014. Larval helminths in the invasive American brine shrimp Artemia franciscana throughout its annual cycle. Acta Parasitologica, 59, 000–000. DOI: 10.2478/s11686-014-0255-x10.2478/s11686-014-0255-x">10.2478/s11686-014-0255-xSearch in Google Scholar

Heins D.C., Baker J.A., Green D.M. 2011. Processes influencing the duration and decline of epizootics in Schistocephalus solidus. Journal of Parasitology 97, 371–376. DOI: 10.1645/GE-2699.110.1645/GE-2699.1">10.1645/GE-2699.1Search in Google Scholar

Hoole D., Carter V., Dufour S. 2010. Ligula intestinalis (Cestoda: Pseudophyllidea): an ideal fish-metazoan parasite model? Parasitology, 137, 425–438. DOI:10.1017/S003118201000010710.1017/S0031182010000107">10.1017/S0031182010000107Search in Google Scholar

IUCN 2014. The IUCN Red List of Threatened Species. Version 3.2014. www.iucnredlist.orgSearch in Google Scholar

Jobling S., Tyler C.R. 2003. Endocrine disruption, parasites and pollutants in wild freshwater fish. Parasitology, 126, S103–S107 DOI: 10.1017/S003118200300365210.1017/S0031182003003652">10.1017/S0031182003003652Search in Google Scholar

Kennedy C.R. 1993. Introductions, spread and colonization of new localities by fish helminth and crustacean parasites in the British Isles: A perspective ans appraisal. Journal of Fish Biology, 43, 287–30110.1111/j.1095-8649.1993.tb00429.xSearch in Google Scholar

Kennedy C.R., Burrough R.J. 1981. The establishment and subsequent history of a population of Ligula intestinalis in roach Rutilus rutilus (L.), Journal of Fish Biology, 19, 105–126. DOI: 10.1111/j.1095-8649.1981.tb05815.x10.1111/j.1095-8649.1981.tb05815.x">10.1111/j.1095-8649.1981.tb05815.xSearch in Google Scholar

Kennedy C.R., Shears P.C., Shears J.A. 2001. Long-term dynamics of Ligula intestinalis and roach Rutilus rutilus: a study of three epizootic cycles over thirty-one years. Parasitology, 123, 257–269. DOI: 10.1017/S003118200100853810.1017/S0031182001008538">10.1017/S0031182001008538Search in Google Scholar

Korkmaz A.S., Zencir O. 2009. Annual dynamics of tapeworm, Ligula intestinalis parasitism in Tench (Tinca tinca) from Beysehir Lake, Turkey. Journal of Animal and Veterinary Advances, 8, 1790–1793Search in Google Scholar

Kraïem M.M. 1994. Systematics, biogeography and bio-ecology of Barbus callensis Valenciennes, 1842 (fish, Cyprinidae) in Tunisia. PhD Thesis, Biol. Fac. Sci., Tunisia, pp. 227 (In French)Search in Google Scholar

Kraïem M.M. 1996. The diet of Barbus callensis (Cyprinidae) in Northern Tunisia. Cybium, 20, 75–85Search in Google Scholar

Kroupova H., Trubiroha A., Wuertz S., Frank S.N., Sures B., Kloas W. 2012. Nutritional status and gene expression along the somatotropic axis in roach (Rutilus rutilus) infected with the tapeworm Ligula intestinalis. General and Comparative Endocrinology, 177, 270–277. DOI: 10.1016/j.ygcen.2012. 04.00710.1016/j.ygcen.2012. 04.007">10.1016/j.ygcen.2012. 04.007Search in Google Scholar

Lafferty K.D., Torchin M.E., Kuris A.M. 2010. The geography of host and parasite invasions Pages 191–202 in S. Morand and B. Krasnow, eds. The Geography of Host–Parasite Interactions. Oxford University Press, Oxford, U.K.Search in Google Scholar

Lévêque C., Daget J. 1984. Cyprinidae. In: CLOFFA 1: Check List of the Freshwater Fishes of Africa (Dajet J., Gosse J.P. & Thys van den Audenaerde D.F.E.), Orstom & Tervuren: MRAC (eds.), Paris, pp. 410Search in Google Scholar

Loot G., Francisco P., Santoul F., Lek S., Guegan J.F. 2001. The three hosts of the Ligula intestinalis (Cestoda) life cycle in Laver-nose-Lacasse gravel pit, France. Archiv fur Hydrobiologie, 152, 511–52510.1127/archiv-hydrobiol/152/2001/511Search in Google Scholar

Loot G., Aulagnier S., Lek S., Thomas F., Guegan J.F. 2002. Experimental demonstration of a behavioural modification in a cyprinid fish, Rutilus rutilus (L.), induced by a parasite, Ligula intestinalis (L.). Canadian Journal of Zoology, 80, 738–74410.1139/z02-043Search in Google Scholar

Margolis L., Esch G.W., Holmes J.C., Kuris A.M., Schad G.A. 1982. The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). Journal of Parasitology, 68, 131–13310.2307/3281335Search in Google Scholar

Msafiri A., Kwendwa K., Nestory P.G., Alistidia M. 2014. Assessment of the effects of plerocercoid larvae of Ligula intestinalis (Cestoda) on Engraulicypris sardella (Cyprinidae) from northern Lake Nyasa/Malawi/Niasa. Aquatic Ecosystem Health & Management, 17, 90–96. DOI: 10.1080/14634988. 2014.875444A10.1080/14634988. 2014.875444A">10.1080/14634988. 2014.875444ASearch in Google Scholar

Nash R.D.M., Valencia A.H., Geffen A.J. 2006. The origin of Fulton’s condition factor-setting the record straight. Fisheries, 31, 236–238Search in Google Scholar

Ould Rouis S., Ould Rouis A., Micha J.C., Arab A. 2012. Reproductive biology of the Cyprinidae, Barbus callensis in an Algerian Dam. Tropicultura, 30, 88–93. (In French)Search in Google Scholar

Parsa Khanghah A., Mojazi Amiri B., Sharifpour I., Jalali jafari B., Motalebi A.A. 2011. Gonad tissue changes of Chalcalburnus mossulensis (Heckel, 1843) infected by Ligula intestinalis (cestoda). Iranian Journal of Fisheries Sciences, 10, 85–94Search in Google Scholar

Piasecki W., Goodwin A.E., Eiras J.C., Nowak B.F. 2004. Importance of Copepoda in freshwater aquaculture. Zoological Studies, 43, 193–205Search in Google Scholar

Pyšek P., Richardson D.M. 2010. Invasive Species, Environmental Change and Management, and Health. Annu. Rev. Environ. Resour., 35, 25–55. DOI: 10.1146/annurev-environ-03300909554810.1146/annurev-environ-033009095548">10.1146/annurev-environ-033009095548Search in Google Scholar

Quinnell R.J., Grafen A., Woolhouse M.E.J. 1995. Changes in parasite aggregation with age: a discrete infection model. Parasitology, 111, 635–64410.1017/S003118200007712XSearch in Google Scholar

Reiczigel J., Rózsa L. 2005. Quantitative Parasitology 3.0. Budapest, Hungary. Distributed by the authorsSearch in Google Scholar

Richardson D.M., Pyšek P., Rejmánek M., Barbour M.G., Dane Panetta F., West C.J. 2000. Naturalization and Invasion of Alien Plants: Concepts and Definitions. Diversity and Distributions, 6, 93–10710.1046/j.1472-4642.2000.00083.xSearch in Google Scholar

Samraoui B., Samraoui F. 2008. An ornithological survey of Algerian wetlands: Important bird areas, Ramsar sites and threatened species. Wildfowl, 58, 71–96Search in Google Scholar

Samraoui F., Alfarhan A.H., Al-Rasheid K.A.S., Samraoui B. 2011. An appraisal of the status and distribution of waterbirds of Algeria: indicators of global changes? Ardeola, 58, 137–16310.13157/arla.58.1.2011.137Search in Google Scholar

Simberloff D., Rejmánek M. 2010. Encyclopedia of Biological Invasions University of California Press, pp. 792Search in Google Scholar

Simberloff D., Martin J.L., Genovesi P., Maris V., Wardle D.A., Aronson J., Courchamp F., Galil B., Garcıà-Berthou E., Pascal M., Pyšek P., Sousa R., Tabacchi E., Vilà M. 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution, Ce Press, 28, 58–66. DOI: 10. 1016/j.tree.2012.07.013101016/j.tree.2012.07.013">101016/j.tree.2012.07.013Search in Google Scholar

Sitjà-Bobadilla A. 2008. Living off a fish: A trade-off between parasites and the immune system. Fish & Shellfish Immunology, 25, 358–372. DOI: 10.1016/j.fsi.2008.03.01810.1016/j.fsi.2008.03.018">10.1016/j.fsi.2008.03.018Search in Google Scholar

Sitjà-Bobadilla A. 2009. Can Myxosporean parasites compromise fish and amphibian reproduction? Proc. R. Soc. B., 276, 2861– 2870. DOI: 10.1098/rspb.2009.036810.1098/rspb.2009.0368">10.1098/rspb.2009.0368Search in Google Scholar

Trubiroha A., Kroupova H., Frank S.N., Sures B., Kloas W. 2010. Inhibition of gametogenesis by the cestode Ligula intestinalis in roach (Rutilus rutilus) is attenuated under laboratory conditions. Parasitology, 138, 648–659. DOI: 10.1017/S00311 8201000151410.1017/S00311 82010001514">10.1017/S00311 82010001514Search in Google Scholar

Turgut E., Develi N., Yeşilayer N., Buhan E. 2011. Seasonal Occurrence of Ligula intestinalis infection in Cyprinids from Almus Dam Lake, Turkey. Kahramanmaras Sutcu Imam University Journal of Natural Sciences, 14, 9–11Search in Google Scholar

Urdeş L., Hangan M. 2013. The Epidemiology of Ligula intestinalis (Phylum Platyhelminthes) within the Cyprinid Populations Inhabiting the Danubian Delta Area. Animal Science and Biotechnologies, 46, 273–276Search in Google Scholar

Vulpe V. 2002. Parasitic invasions on fish stocks of N-E area from Moldavia. Revista Scientia Parasitologica, 3, 144–149Search in Google Scholar

Yen Nhi T.T., Mohd Shazili N.A., Shaharom-Harrison F. 2013. Use of cestodes as indicator of heavy metal pollution. Experimental Parasitology, 133, 75–79. DOI: 10.1016/j.exppara.2012.10.01410.1016/j.exppara.2012.10.014">10.1016/j.exppara.2012.10.014Search in Google Scholar

Zhokhov A.E., Pugacheva M.N. 2012. Distribution and occurrence of Ligula intestinalis (L.) Plerocercoids (Cestoda, Ligulidae) in the fishes of Lake Tana, Ethiopia. Inland Water Biology, 5, 293–298. DOI: 10.1134/S199508291202016210.1134/S1995082912020162">10.1134/S1995082912020162Search in Google Scholar

Received: 2015-4-12
Revised: 2015-10-12
Accepted: 2015-12-4
Published Online: 2016-3-30
Published in Print: 2016-6-1

© W. Stefański Institute of Parasitology, PAS

Articles in the same Issue

  1. Research Article
  2. Human Trichinella infection outbreaks in Slovakia, 1980-2008
  3. Research Article
  4. Immune responses in rats and sheep induced by a DNA vaccine containing the phosphoglycerate kinase gene of Fasciola hepatica and liver fluke infection
  5. Research Article
  6. Isolation and identification of Acanthamoeba spp. from thermal swimming pools and spas in Southern Brazil
  7. Research Article
  8. First report and spore ultrastructure of Vairimorpha plodiae (Opisthokonta: Microspora) from Plodia interpunctella (Lepidoptera: Pyralidae) in Turkey
  9. Research Article
  10. Evaluation of immuno diagnostic assay for the exposure of stage specific filarial infection
  11. Research Article
  12. Morphological, molecular and developmental characterization of the thelastomatid nematode Thelastoma bulhoesi (de Magalhães, 1900) (Oxyuridomorpha: Thelastomatidae) parasite of Periplaneta americana (Linnaeus, 1758) (Blattodea: Blattidae) in Japan
  13. Research Article
  14. Wild boar (Sus scrofa) – reservoir host of Toxoplasma gondii, Neospora caninum and Anaplasma phagocytophilum in Slovakia
  15. Research Article
  16. Prevalence of Giardia spp. in young dogs using a combination of two diagnostic methods
  17. Research Article
  18. CIAS detection of Fasciola hepatica/F. gigantica intermediate forms in bovines from Bangladesh
  19. Research Article
  20. Redescription of two species of cystidicolid nematodes (Spirurina: Cystidicolidae) from Notopterus notopterus (Osteichthyes) in Thailand
  21. Research Article
  22. Paradiplozoon iraqensis n. sp. (Monogenea: Diplozoinae) from Cyprinion macrostomum (Cyprinidae) in the Tigris River, Iraq
  23. Research Article
  24. Genetic diversity of Diplomonadida in fish of the genus Coregonus from Southeastern Siberia
  25. Research Article
  26. Dynamics and effects of Ligula intestinalis (L.) infection in the native fish Barbus callensis Valenciennes, 1842 in Algeria
  27. Research Article
  28. Bioinformatics analysis and expression of a novel protein ROP48 in Toxoplasma gondii
  29. Research Article
  30. Vertical transmission of Trypanosoma evansi in dromedary camels and studies on fetal pathology, diagnosis and treatment
  31. Research Article
  32. Molecular detection and prevalence of Theileria equi and Babesia caballi in horses of central Balkan
  33. Research Article
  34. Two new species of the genus Pterygosoma (Acariformes: Pterygosomatidae) parasitizing agamid lizards (Sauria: Agamidae) from the Indian subcontinent
  35. Research Article
  36. A new species of Spauligodon (Nematoda; Oxyuroidea; Pharyngodonide) and other Helminths in Ptychozoon Kuhli (Squamata: Gekkonidae) from East Malaysia
  37. Research Article
  38. Molecular characterization and phylogeny of some mazocraeidean monogeneans from carangid fish
  39. Research Article
  40. Validation of the TrichinEasy® digestion system for the detection of Anisakidae larvae in fish products
  41. Research Article
  42. Evaluation of the in vitro activity of ceragenins against Trichomonas vaginalis
  43. Research Article
  44. Prevalence and genotypes of Enterocytozoon bieneusi in sika deer in Jilin province, Northeastern China
  45. Research Article
  46. Endoparasitic fauna of red foxes (Vulpes vulpes) and golden jackals (Canis aureus) in Serbia
  47. Research Article
  48. Molecular characterization of Giardia duodenalis from white yaks in China
  49. Research Article
  50. Seroprevalence of Toxoplasma gondii among turkeys on family farms in the state of Northeastern Brazil
  51. Research Article
  52. First report of molecular identification of Cystoisospora suis in piglets with lethal diarrhea in Japan
  53. Research Article
  54. Determination of PCT on admission is a useful tool for the assessment of disease severity in travelers with imported Plasmodium falciparum malaria
  55. Research Article
  56. Dynamics of Theileria orientalis genotype population in cattle in a year-round grazing system
  57. Research Article
  58. A new isosporoid coccidia (Apicomplexa: Eimeriidae)from the southern house wren Troglodytes musculus Naumann, 1823 (Passeriformes: Troglodytidae) from Brazil
  59. Research Article
  60. Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminut a reveals their immunogenic properties and the presence of new E-S proteins in cestodes
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ap-2016-0041/html
Scroll to top button