Home Hydroxyapatite modified with silica used for sorption of copper(II)
Article
Licensed
Unlicensed Requires Authentication

Hydroxyapatite modified with silica used for sorption of copper(II)

  • Erzsébet-Sára Bogya EMAIL logo , Réka Barabás , Alexandra Csavdári , Valentina Dejeu and Ioan Bâldea
Published/Copyright: August 25, 2009
Become an author with De Gruyter Brill

Abstract

This paper aims to increase the sorption capacity of hydroxyapatite and to find the best apatite-based material for metal ions sorption. The sorption process of copper ions from water solutions by HAP and structurally modified HAP was carried out in this work. Structural modifications of HAP were realized in the preparation phase by an addition of sodium silica into the reaction medium. The prepared materials were characterized by physical-chemical methods: IR, electron-microscopy and X-ray diffraction. The composites characterized were tested in kinetic studies regarding ion exchange and adsorption of Cu2+. It was revealed that the silica content, particle size and initial copper ion concentration influence the process rate.

[1] Barabás, R., Pop, A., Bogya, E. S., & Dejeu, V. (2007). Synthesis and properties of intelligent biomaterials. In 4th Edition of the National Symposium of Biomaterials “Biomaterials and Medical-Surgery Applications”, October 18–20, 2007 (pp. 12). Cluj-Napoca: Babes-Bolyai University. ISBN: 978-973-610-607-1. Search in Google Scholar

[2] Cao, X., Ma, L. Q., Rhue, D. R., & Appel, C. S. (2004). Mechanisms of lead, copper, and zinc retention by phosphate rock. Environmental Pollution, 131, 435–444. DOI: 10.1016/j.envpol.2004.03.003. http://dx.doi.org/10.1016/j.envpol.2004.03.00310.1016/j.envpol.2004.03.003Search in Google Scholar

[3] Chaturvedi, P. K., Seth, C. S., & Misra, V. (2006). Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite). Chemosphere, 64, 1109–1114. DOI: 10.1016/j.chemosphere.2005.11.077. http://dx.doi.org/10.1016/j.chemosphere.2005.11.07710.1016/j.chemosphere.2005.11.077Search in Google Scholar

[4] Chen, X., Wright, J. V., Conca, J. L., & Peurrung, L. M. (1997a). Evaluation of heavy metal remediation using mineral apatite. Water, Air, & Soil Pollution, 98, 57–78. DOI: 10.1023/A:1026425931811. 10.1023/A:1026425931811Search in Google Scholar

[5] Chen, X., Wright, J. V., Conca, J. L., & Peurrung, L. M. (1997b). Effects of pH on heavy metal sorption on mineral apatite. Environmental Science & Technology, 31, 624–631. DOI: 10.1021/es950882f. http://dx.doi.org/10.1021/es950882f10.1021/es950882fSearch in Google Scholar

[6] Corami, A., Mignardi, S., & Ferrini, V. (2008). Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science, 317, 402–408. DOI: 10.1016/j.jcis.2007.09.075. http://dx.doi.org/10.1016/j.jcis.2007.09.07510.1016/j.jcis.2007.09.075Search in Google Scholar

[7] Corami, A., Mignardi, S., & Ferrini, V. (2007). Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite. Journal of Hazardous Materials, 146, 164–170. DOI: 10.1016/j.jhazmat.2006.12.003. http://dx.doi.org/10.1016/j.jhazmat.2006.12.00310.1016/j.jhazmat.2006.12.003Search in Google Scholar

[8] Czerniczyniec, M., Farías, S., Magallanes, J., & Cicerone, D. (2007). Arsenic(V) adsorption onto biogenic hydroxyapatite: Solution composition effects. Water, Air, & Soil Pollution, 180, 75–82. DOI: 10.1007/s11270-006-9251-6. http://dx.doi.org/10.1007/s11270-006-9251-610.1007/s11270-006-9251-6Search in Google Scholar

[9] Deydier, E., Guilet, R., & Sharrock, P. (2003). Beneficial use of meat and bone meal combustion residue: an efficient low cost material to remove lead from aqueous effluent. Journal of Hazardous Materials, 101, 55–64. DOI: 10.1016/S0304-3894(03)00137-7. http://dx.doi.org/10.1016/S0304-3894(03)00137-710.1016/S0304-3894(03)00137-7Search in Google Scholar

[10] Fábián, R., Kotsis, I., & Piltér, Z. (1999). Comparison of properties of flourapatites prepared by solid state reaction and precipitation. Hungarian Journal of Industrial Chemistry, 27, 259–263. Search in Google Scholar

[11] Gibson, I. R., Best, S. M., & Bonfield, W. (1999). Chemical characterization of silicon-substituted hydroxyapatite. Journal of Biomedical Materials Research, 44, 422–428. DOI: 10.1002/(SICI)1097-4636(19990315)44. http://dx.doi.org/10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-#Search in Google Scholar

[12] Karakassides, M. A., Gournis, D., & Petridis, D. (1999). An infrared reflectance study of Si-O vibrations in thermally treated alkali-saturated montmorillonites. Clay Minerals, 34, 429–438. DOI: 10.1180/000985599546334. http://dx.doi.org/10.1180/00098559954633410.1180/000985599546334Search in Google Scholar

[13] Launer, P. J. (1987). Infrared analysis of organosilicon compounds: Spectra-structure correlations. In R. Anderson, B. Arkles, & G. L. Larson (Eds.), Silicon compounds: Register and review (4th ed., pp. 100–103). Bristol, PA: Petrarch Systems. Search in Google Scholar

[14] Lower, S. K., Maurice, P. A., Traina, S. J., & Carlson, E. H. (1998). Aqueous Pb sorption by hydroxyapatite: Applications of atomic force microscopy to dissolution, nucleation, and growth studies. American Mineralogist, 83, 147–158. 10.2138/am-1998-1-215Search in Google Scholar

[15] Monteil-Rivera, F., & Fedoroff, M. (2002). Sorption of inorganic species on apatites from aqueous solutions. In A. T. Hubbard (Ed.), Encyclopedia of surface and colloid science (pp. 1–26). New York: Marcel Dekker Inc. DOI: 10.1081/E-ESCS-120010190. Search in Google Scholar

[16] Sheha, R. R. (2007). Sorption behavior of Zn(II) ions on synthesized hydroxyapatites. Journal of Colloid and Interface Science, 310, 18–26. DOI: 10.1016/j.jcis.2007.01.047. http://dx.doi.org/10.1016/j.jcis.2007.01.04710.1016/j.jcis.2007.01.047Search in Google Scholar

[17] Sudarsanan, K., & Young, R. A. (1978). Structural interactions of F, Cl and OH in apatites. Acta Crystallographica Section B, B34, 1401–1407. DOI: 10.1107/S0567740878005798. http://dx.doi.org/10.1107/S056774087800579810.1107/S0567740878005798Search in Google Scholar

[18] Tiselius, A., Hjertén, S., & Levin, Ö. (1956). Protein chromatography on calcium phosphate columns. Archives of Biochemistry and Biophysics, 65, 132–155. DOI: 10.1016/0003-9861(56)90183-7. http://dx.doi.org/10.1016/0003-9861(56)90183-710.1016/0003-9861(56)90183-7Search in Google Scholar

[19] Vallet-RegÍ, M. (2001). Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 97–108. DOI: 10.1039/b007852m. 10.1039/b007852mSearch in Google Scholar

[20] Young, J. L., Evert, J. E., & Richard, J. R. (2005). Sorption mechanisms of zinc on hydroxyapatite: systematic uptake studies and EXAFS spectroscopy analysis. Environmental Science & Technology, 39, 4042–4048. DOI: 10.1021/es048593r. http://dx.doi.org/10.1021/es040470j10.1021/es048593rSearch in Google Scholar PubMed

[21] Xu, H. Y., Yang, L., Wang, P., Liu, Y., & Peng, M. S. (2008). Kinetic research on the sorption of aqueous lead by synthetic carbonate hydroxyapatite. Journal of Environmental Management, 86, 319–328. DOI: 10.1016/j.jenvman.2006.12.011. http://dx.doi.org/10.1016/j.jenvman.2006.12.01110.1016/j.jenvman.2006.12.011Search in Google Scholar PubMed

Published Online: 2009-8-25
Published in Print: 2009-10-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Magnetic nano- and microparticles in biotechnology
  2. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
  3. Copper determination using ICP-MS with hexapole collision cell
  4. Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
  5. Robust stabilization of a chemical reactor
  6. Influence of production progress on the heavy metal content in flax fibers
  7. In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
  8. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
  9. Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
  10. Characterization of mechanochemically synthesized lead selenide
  11. Hydroxyapatite modified with silica used for sorption of copper(II)
  12. Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
  13. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
  14. Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
  15. Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
  16. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
  17. Gas chromatographic retention times prediction for components of petroleum condensate fraction
  18. Gas chromatography with surface ionization detection of nitro pesticides
  19. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
  20. Aqueous foam stabilized by polyoxyethylene dodecyl ether
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0059-x/html
Scroll to top button