Home Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
Article
Licensed
Unlicensed Requires Authentication

Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions

  • Ahmet Colak EMAIL logo , Ender Cekirge , Serdar Karaböcek , Aslıgül Küçükdumlu , Nagihan Ertunga , Melek Col and Rza Abbasoğlu
Published/Copyright: August 25, 2009
Become an author with De Gruyter Brill

Abstract

Nucleolytic activities of some new oxime-type ligand complexes were investigated by neutral agarose gel electrophoresis. Analysis of the cleavage products in agarose gel indicated that all complexes used converted supercoiled pUC18 plasmid DNA to its nicked or linear form. It was found that nucleolytic activities of the complexes depend on the complex concentration, reaction time and the presence of a cooxidant (magnesium monoperoxyphthalate, MMPP) in the reaction mixture. However, the complexes cleaved pUC18 plasmid DNA at all investigated pH values. Nucleolytic activities of complexes were investigated for different complex concentrations (0.1–100 μmol L−1), pH values (6.0–10.0) and reaction times (0–60 min). Molecular modeling studies performed by the Hyperchem Software together with DNA-binding studies showed that planar sites of the complexes intercalated into double stranded DNA. It can be concluded that all oxime-type ligand complexes used can be evaluated as nuclease mimics.

[1] Asad, S. F., Singh, S., Ahmad, A., & Hadi, S. M. (1999). Bilirubin-Cu(II) complex degrades DNA. Biochimica et Biophysica Acta (BBA) — General Subjects, 1428, 201–208. DOI: 10.1016/S0304-4165(99)00075-6. http://dx.doi.org/10.1016/S0304-4165(99)00075-610.1016/S0304-4165(99)00075-6Search in Google Scholar

[2] Barnard, C. F. J., Clear, M. J., & Hydes, P. C. (1987). Second generation of anticancer platinum compounds. Chemistry in Britain, 22, 1001–1004. Search in Google Scholar

[3] Belev, T. N., Singh, M., & McCarthy, J. E. G. (1991). A fully modular vector system for the optimisation of gene expression in Escherichia coli. Plasmid, 26, 147–150. DOI: 10.1016/0147-619X(91)90056-3. http://dx.doi.org/10.1016/0147-619X(91)90056-310.1016/0147-619X(91)90056-3Search in Google Scholar

[4] Borah, S., Melvin, M. S., Lindquist, N., & Manderville, R. A. (1998). Copper-mediated nuclease activity of a tambjamine alkaloid. Journal of the American Chemical Society, 120, 4557–4562. DOI: 10.1021/ja9729746. http://dx.doi.org/10.1021/ja972974610.1021/ja9729746Search in Google Scholar

[5] Bowen, W. S., Hill, W. E., & Lodmell, J. S. (2001). Comparison of rRNA cleavage by complementary 1,10-phenanthroline-Cu(II)- and EDTA-Fe(II)-derivatized oligonucleotides. Methods, 25, 344–350. DOI: 10.1006/meth.2001.1246. http://dx.doi.org/10.1006/meth.2001.124610.1006/meth.2001.1246Search in Google Scholar

[6] Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models, 2nd Ed. Chichester: Wiley. Search in Google Scholar

[7] Cowan, J. A. (2001). Chemical nucleases. Current Opinion in Chemical Biology, 5, 634–642. DOI: 10.1016/S1367-5931(01)00259-9. http://dx.doi.org/10.1016/S1367-5931(01)00259-910.1016/S1367-5931(01)00259-9Search in Google Scholar

[8] Detmer, C. A., Pamatong, F. V., & Bocarsly, J. R. (1996). Nonrandom double strand cleavage of DNA by a monofunctional metal complex: mechanistic studies. Inorganic Chemistry, 35, 6292–6298. DOI: 10.1021/ic960519p. http://dx.doi.org/10.1021/ic960519p10.1021/ic960519pSearch in Google Scholar

[9] Dülger, S., Saglam, N., Beldüz, A. O., Güner, S., & Karaböcek, S. (2000). DNA cleavage by homo- and heterotetranuclear Cu(II) and Mn(II) complexes with tetrathioether-tetrathiol moiety. BioMetals, 13, 261–265. DOI: 10.1023/A:1009222705659. http://dx.doi.org/10.1023/A:100922270565910.1023/A:1009222705659Search in Google Scholar

[10] García-Raso, Á., Fiol, J. J., Adrover, B., Moreno, V., Mata, I., Espinosa, E., & Molins, E. (2003). Synthesis, structure and nuclease properties of several ternary copper(II) peptide complexes with 1,10-phenanthroline. Journal of Inorganic Biochemistry, 95, 77–86. DOI: 10.1016/S0162-0134(03)00121-1. http://dx.doi.org/10.1016/S0162-0134(03)00121-110.1016/S0162-0134(03)00121-1Search in Google Scholar

[11] González-álvarez, M., Alzuet, G., Borrás, J., Macías, B., del Olmo, M., Liu-González, M., & Sanz, F. (2002). Nuclease activity of [Cu(sulfathiazolato)2(benzimidazole)2]2MeOH. Synthesis, properties and crystal structure. Journal of Inorganic Biochemistry, 89, 29–35. DOI: 10.1016/S0162-0134(01)00369-5. 10.1016/S0162-0134(01)00369-5Search in Google Scholar

[12] Groves, J. T., & Farrell, T. P. (1989). DNA cleavage by a metal chelating tricationic porphyrin. Journal of the American Chemical Society, 111, 4998–5000. DOI: 10.1021/ja00195a074. http://dx.doi.org/10.1021/ja00195a07410.1021/ja00195a074Search in Google Scholar

[13] Güner, S., & Karaböcek, S. (1998). Superoxide dismutase-mimicking activities of dinuclear Cu(II) complexes with ligands containing a tetrathioether-tetraamino moiety. Journal of Biochemical and Molecular Toxicology, 12, 53–59. DOI: 10.1002/(SICI)1099-0461(1998)12:1〈53::AID-JBT7〉3.0.CO;2-O. http://dx.doi.org/10.1002/(SICI)1099-0461(1998)12:1<53::AID-JBT7>3.0.CO;2-OSearch in Google Scholar

[14] Güner, S., Karaböcek, S., & Kaklikkaya, I. (1999). Models for superoxide dismutases: characterization of mononuclear Cu(II), Fe(III), and Mn(II) complexes with 4′,5′-bis(salicylideneimino)benzo-15-crown-5. Bioorganic & Medicinal Chemistry, 7, 329–333. DOI: 10.1016/S0968-0896(98)00240-5. http://dx.doi.org/10.1016/S0968-0896(98)00240-510.1016/S0968-0896(98)00240-5Search in Google Scholar

[15] Hirohama, T., Kuranuki, Y., Ebina, E., Sugizaki, T., Arii, H., Chikira, M., Selvi, P. T., & Palaniandavar, M. (2005). Copper(II) complexes of 1,10-phenanthroline-derived ligands: Studies on DNA binding properties and nuclease activity. Journal of Inorganic Biochemistry, 99, 1205–1219. DOI: 10.1016/j.jinorgbio.2005.02.020. http://dx.doi.org/10.1016/j.jinorgbio.2005.02.02010.1016/j.jinorgbio.2005.02.020Search in Google Scholar

[16] Kane, S. A., & Hecht, M. S. (1994). Polynucleotide recognition and degradation by bleomycin. Progress in Nucleic Acid Research and Molecular Biology, 49, 313–352. DOI: 10.1016/S0079-6603(08)60054-9. http://dx.doi.org/10.1016/S0079-6603(08)60054-910.1016/S0079-6603(08)60054-9Search in Google Scholar

[17] Karaböcek, N., Armutcu, A., & Karaböcek, S. (2006a). Synthesis and structural studies of 2E,3E)-3-[(6-{[(1E,2E)-2-(hydroxyimino)-1-methylpropylidene]amino} pyridin-2-yl) imino]butan-2-one oxime, ligand and its mono-, di- and trinuclear copper(II) complexes. Transition Metal Chemistry, 31, 938–942. DOI: 10.1007/s11243-006-0089-y. http://dx.doi.org/10.1007/s11243-006-0089-y10.1007/s11243-006-0089-ySearch in Google Scholar

[18] Karaböcek, S., Karaböcek, N., & Armutcu, A. (2006b). Synthesis and structural studies of 2-(hydroxyimino)-1-methylpropylideneamino-phenyliminobutan-2-one oxime, ligand and its complexes with Cu(II) and Ni(II). Transition Metal Chemistry, 31, 459–464. DOI: 10.1007/s11243-006-0012-6. http://dx.doi.org/10.1007/s11243-006-0012-610.1007/s11243-006-0012-6Search in Google Scholar

[19] Kumar, R. S., Arunachalam, S., Periasamy, V. S., Preethy, C. P., Riyasdeen, A., & Akbarsha, M. A. (2008). DNA binding and biological studies of some novel water-soluble polymercopper(II)-phenantroline complexes. European Journal of Medicinal Chemistry, 43, 2082–2091. DOI: 10.1016/j.ejmech.2007.09.017. http://dx.doi.org/10.1016/j.ejmech.2007.09.01710.1016/j.ejmech.2007.09.017Search in Google Scholar

[20] Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. Journal of Molecular Biology, 3, 18–30. 10.1016/S0022-2836(61)80004-1Search in Google Scholar

[21] Liu, C., Wang, M., Zhang, T., & Sun, H. (2004). DNA hydrolysis promoted by di- and multi-nuclear metal complexes. Coordination Chemistry Reviews, 248, 147–168. DOI: 10.1016/j.cct.2003.11.002. http://dx.doi.org/10.1016/j.cct.2003.11.00210.1016/j.cct.2003.11.002Search in Google Scholar

[22] Liu, C., Zhou, J., Li, Q., Wang, L., Liao, Z., & Xu, H. (1999). DNA damage by copper(II) complexes: coordination-structural dependence of reactivities. Journal of Inorganic Biochemistry, 75, 233–240. DOI: 10.1016/S0162-0134(99)00037-9. http://dx.doi.org/10.1016/S0162-0134(99)00037-910.1016/S0162-0134(99)00037-9Search in Google Scholar

[23] McLachlan, G. A., Muller, J. G., Rokita, S. E., & Burrows, C. J. (1996). Metal-mediated oxidation of guanines in DNA and RNA: a comparison of cobalt(II), nickel(II) and copper(II) complexes. Inorganica Chimica Acta, 251, 193–199. DOI: 10.1016/S0020-1693(96)05272-3. http://dx.doi.org/10.1016/S0020-1693(96)05272-310.1016/S0020-1693(96)05272-3Search in Google Scholar

[24] Papavassiliou, A. G. (1995). Chemical nucleases as probes for studying DNA-protein interactions. Biochemical Journal, 305, 345–357. 10.1042/bj3050345Search in Google Scholar

[25] Pindur, U., Haber, M., & Sattler, K. (1993). Antitumor active drugs as intercalators of deoxyribonucleıc acid: molecular models of intercalatıon complexes. Journal of Chemical Education, 70, 263–272. http://dx.doi.org/10.1021/ed070p26310.1021/ed070p263Search in Google Scholar

[26] Pryor, W. A. (1988). Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: It has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA. Free Radical Biology & Medicine, 4, 219–223. DOI: 10.1016/0891-5849(88)90043-3. http://dx.doi.org/10.1016/0891-5849(88)90043-310.1016/0891-5849(88)90043-3Search in Google Scholar

[27] Rappe, A. K., & Casevit, C. J. (1996). Molecular mechanics across chemistry. California, University Science Books. Search in Google Scholar

[28] Reddy, K. H., Reddy, P. S., & Babu, P. R. (2000). Nuclease activity of 2-substituted heteroaromatic thiosemicarbazone and semicarbazone copper(II) complexes. Transition Metal Chemistry, 25, 154–160. DOI: 10.1023/A:1007027011216. http://dx.doi.org/10.1023/A:100702701121610.1023/A:1007027011216Search in Google Scholar

[29] Ross, S. A., Pittie, M., & Meunier, B. (1999). Synthesis of two acridine conjugates of the bis(phenanthroline) ligand “clip-phen” and evaluation of the nuclease activity of the corresponding copper complexes. European Journal of Inorganic Chemistry, 1999, 557–563. DOI: 10.1002/(SICI)1099-0682(199903)1999:3〈557::AID-EJIC557〉3.0.CO;2-Y. http://dx.doi.org/10.1002/(SICI)1099-0682(199903)1999:3<557::AID-EJIC557>3.0.CO;2-Y10.1002/(SICI)1099-0682(199903)1999:3<557::AID-EJIC557>3.0.CO;2-YSearch in Google Scholar

[30] Saglam, N., Colak, A., Serbest, K., Karaböcek, S., & Güner, S. (2004). DNA hydrolysis by homo- and heteronuclear Cu(II)-Ni(II) complexes of two diester-type ligands. Monatshefte für Chemie, 135, 1023–1031. DOI: 10.1007/s00706-004-0178-6. http://dx.doi.org/10.1007/s00706-004-0178-610.1007/s00706-004-0178-6Search in Google Scholar

[31] Saglam, N., Colak, A., Serbest, K., Dülger, S., Güner, S., Karaböcek, S., & Beldüz, A. O. (2002). Oxidative cleavage of DNA by homo- and heteronuclear Cu(II)-Mn (II) complexes of an oxime-type ligand, BioMetals, 15, 357–365. DOI: 10.1023/A:1020228723299. http://dx.doi.org/10.1023/A:102022872329910.1023/A:1020228723299Search in Google Scholar

[32] Serbest, K, Karaböcek, S., Değirmencioğlu, İ., Güner, S., & Kormali, F. (2001). Mono-, di- and trinuclear copper(II) dioxime complexes; 3-{2-[2-(2-hydroxyimino-1-methylpropylideneamino) ethylamino]ethylimino}butan-2-one oxime. Transition Metal Chemistry, 26, 375–379. DOI: 10.1023/A:1011073212502. http://dx.doi.org/10.1023/A:101107321250210.1023/A:1011073212502Search in Google Scholar

[33] Sigman, D. S. (1986). Nuclease activity of 1,10-phenanthrolinecopper ion. Accounts of Chemical Research, 19, 180–186. DOI: 10.1021/ar00126a004. http://dx.doi.org/10.1021/ar00126a00410.1021/ar00126a004Search in Google Scholar

[34] Sigman, D. S., & Chen, C. B. (1990). Chemical nucleases: new reagents in molecular biology. Annual Review of Biochemistry, 59, 207–236. DOI: 10.1146/annurev.bi.59.070190.0012-31. http://dx.doi.org/10.1146/annurev.bi.59.070190.00123110.1146/annurev.bi.59.070190.001231Search in Google Scholar

[35] Sigman, D. S., Graham, D. R., D’Aurura, V., & Stern, A. M. (1979). Oxygen-dependent cleavage of DNA by the l,l0-phenanthroline cuprous complex. The Journal of Biological Chemistry, 254, 12269–12272. 10.1016/S0021-9258(19)86305-6Search in Google Scholar

[36] Song, Y.-M, Wu, Q., Yang, P.-J, Luan, N.-N, Wang, L.-F, & Liu, Y.-M (2006). DNA binding and cleavage activity of Ni(II) complex with all-trans retinoic acid. Journal of Inorganic Biochemistry, 100, 1685–1691. DOI: 10.1016/j.jinorgbio.2006.06.001. http://dx.doi.org/10.1016/j.jinorgbio.2006.06.00110.1016/j.jinorgbio.2006.06.001Search in Google Scholar

[37] Terenzi, A., Barone, G., Silvestri, A., Giuliani, A. M., Ruggirello, A., & Liveri, V. T. (2009). The interaction of native calf thymus DNA with FeIII-dipyrido[3,2-a:2′,3′-c]phenazine. Journal of Inorganic Biochemistry, 103, 1–9. DOI: 10.16/j.jinorgbio.2008.08.011. http://dx.doi.org/10.1016/j.jinorgbio.2008.08.01110.1016/j.jinorgbio.2008.08.011Search in Google Scholar

[38] Travers, A. A. (1993). DNA-protein interactions. London: Chapman and Hall. 10.1007/978-94-011-1480-6Search in Google Scholar

[39] Wang, J., Yang, Z.-Y., Yi, X.-Y., & Wang, B.-D. (2009). DNA-binding properties studies and spectra of a novel fluorescent Zn(II) complex with a new chromone derivative. Journal of Photochemistry and Photobiology A: Chemistry, 201, 183–190. DOI: 10.1016/j.jphotochem.2008.10.022. http://dx.doi.org/10.1016/j.jphotochem.2008.10.02210.1016/j.jphotochem.2008.10.022Search in Google Scholar

[40] Zhang, Q.-L., Liu, J.-G., Chao, H., Xue, G.-Q., & Ji, L.-N. (2001). DNA-binding and photocleavage studies of cobalt (III) polypyridyl complexes: [Co(phen)2IP]3+ and [Co(phen)2 PIP]3+. Journal of Inorganic Biochemistry, 83, 49–55. DOI: 10.1016/S0162-0134(00)00132-X. http://dx.doi.org/10.1016/S0162-0134(00)00132-X10.1016/S0162-0134(00)00132-XSearch in Google Scholar

Published Online: 2009-8-25
Published in Print: 2009-10-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Magnetic nano- and microparticles in biotechnology
  2. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
  3. Copper determination using ICP-MS with hexapole collision cell
  4. Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
  5. Robust stabilization of a chemical reactor
  6. Influence of production progress on the heavy metal content in flax fibers
  7. In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
  8. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
  9. Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
  10. Characterization of mechanochemically synthesized lead selenide
  11. Hydroxyapatite modified with silica used for sorption of copper(II)
  12. Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
  13. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
  14. Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
  15. Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
  16. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
  17. Gas chromatographic retention times prediction for components of petroleum condensate fraction
  18. Gas chromatography with surface ionization detection of nitro pesticides
  19. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
  20. Aqueous foam stabilized by polyoxyethylene dodecyl ether
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0058-y/pdf
Scroll to top button