Home Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
Article
Licensed
Unlicensed Requires Authentication

Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3

  • Edda Winter , Philipp Seipel , Tatiana Zinkevich , Sylvio Indris , Bambar Davaasuren , Frank Tietz and Michael Vogel EMAIL logo
Published/Copyright: October 11, 2021

Abstract

Various nuclear magnetic resonance (NMR) methods are combined to study the structure and dynamics of Li1.5Al0.5Ti1.5(PO4)3 (LATP) samples, which were obtained from sintering at various temperatures between 650 and 900 °C. 6Li, 27Al, and 31P magic angle spinning (MAS) NMR spectra show that LATP crystallites are better defined for higher calcination temperatures. Analysis of 7Li spin-lattice relaxation and line-shape changes indicates the existence of two species of lithium ions with clearly distinguishable jump dynamics, which can be attributed to crystalline and amorphous sample regions, respectively. An increase of the sintering temperature leads to higher fractions of the fast lithium species with respect to the slow one, but hardly affects the jump dynamics in either of the phases. Specifically, the fast and slow lithium ions show jumps in the nanoseconds regime near 300 and 700 K, respectively. The activation energy of the hopping motion in the LATP crystallites amounts to ca. 0.26 eV. 7Li field-gradient diffusometry reveals that the long-range ion migration is limited by the sample regions featuring slow transport. The high spatial resolution available from the high static field gradients of our setup allows the observation of the lithium ion diffusion inside the small (<100 nm) LATP crystallites, yielding a high self-diffusion coefficient of D = 2 × 10−12 m2/s at room temperature.


Corresponding author: Michael Vogel, Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr., 6, D-64289 Darmstadt, Germany, E-mail:
Dedicated to Paul Heitjans on the occasion of his 75th birthday. Edda Winter and Philipp Seipel contributed equally to this work.
  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Janek, J., Zeier, W. G. Nat. Energy 2016, 1, 16141; https://doi.org/10.1038/nenergy.2016.141.Search in Google Scholar

2. Xiao, W., Wang, J., Fan, L., Zhang, J., Li, X. Energy Storage Mater. 2019, 19, 379–400; https://doi.org/10.1016/j.ensm.2018.10.012.Search in Google Scholar

3. DeWees, R., Wang, H. ChemSusChem 2019, 12, 3713–3725; https://doi.org/10.1002/cssc.201900725.Search in Google Scholar PubMed

4. Mizuno, F., Hayashi, A., Tadanaga, K., Tatsumisago, M. Adv. Mater. 2005, 17, 918–921; https://doi.org/10.1002/adma.200401286.Search in Google Scholar

5. Spannenberger, S., Miß, V., Klotz, E., Kettner, J., Cronau, M., Ramanayagam, A., di Capua, F., Elsayed, M., Krause-Rehberg, R., Vogel, M., Roling, B. Solid State Ionics 2019, 341, 115040; https://doi.org/10.1016/j.ssi.2019.115040.Search in Google Scholar

6. Seino, Y., Ota, T., Takada, K., Hayashi, A., Tatsumisago, M. Energy Environ. Sci. 2014, 7, 627–631; https://doi.org/10.1039/c3ee41655k.Search in Google Scholar

7. Tatsumisago, M., Hayashi, A. Solid State Ionics 2012, 225, 342–345; https://doi.org/10.1016/j.ssi.2012.03.013.Search in Google Scholar

8. Arbi, K., Mandal, S., Rojo, J. M., Sanz, J. Chem. Mater. 2002, 14, 1091–1097; https://doi.org/10.1021/cm010528i.Search in Google Scholar

9. Arbi, K., Hoelzel, M., Kuhn, A., Garcia-Alvardo, F., Sanz, J. Chem. Mater. 2002, 14, 1091–1097; https://doi.org/10.1021/cm010528i.Search in Google Scholar

10. Rettenwander, D., Welzl, A., Pristat, S., Tietz, F., Taibl, S., Redhammer, G. J., Fleig, J. J. Mater. Chem. A 2016, 4, 1506–1513; https://doi.org/10.1039/c5ta08545d.Search in Google Scholar

11. Hupfer, T., Bucharsky, E. C., Schell, K. G., Senyshyn, A., Monchak, M., Hoffmann, M. J., Ehrenberg, H. Solid State Ionics 2016, 288, 235–239; https://doi.org/10.1016/j.ssi.2016.01.036.Search in Google Scholar

12. Shin, Y. K., Sengul, M. Y., Jonayat, A. S. M., Lee, W., Gomez, E. D., Randall, C. A., van Duin, A. C. T. Phys. Chem. Chem. Phys. 2018, 20, 22134–22147; https://doi.org/10.1039/c8cp03586e.Search in Google Scholar

13. Davaasuren, B., Tietz, F. Solid State Ionics 2019, 338, 144–152; https://doi.org/10.1016/j.ssi.2019.05.016.Search in Google Scholar

14. Best, A. S., Forsyth, M., MacFarlane, D. R. Solid State Ionics 2000, 136–137, 339–344; https://doi.org/10.1016/s0167-2738(00)00493-8.Search in Google Scholar

15. Key, B., Schroeder, D. J., Ingram, B. J., Vaughey, J. T. Chem. Mater. 2012, 24, 287–293; https://doi.org/10.1021/cm202773d.Search in Google Scholar

16. Epp, V., Ma, Q., Hammer, E.-M., Tietz, F., Wilkening, M. Phys. Chem. Chem. Phys. 2015, 17, 32115–32121; https://doi.org/10.1039/c5cp05337d.Search in Google Scholar PubMed

17. Chandran, C. V., Pristat, S., Witt, E., Tietz, F., Heitjans, P. J. Phys. Chem. C 2016, 120, 8436–8442; https://doi.org/10.1021/acs.jpcc.6b00318.Search in Google Scholar

18. Wilkening, M., Heitjans, P. ChemPhysChem 2012, 13, 53–65; https://doi.org/10.1002/cphc.201100580.Search in Google Scholar PubMed

19. Chandran, C. V., Heitjans, P. Annu. Rep. NMR Spectrosc. 2016, 89, 1–102; https://doi.org/10.1016/bs.arnmr.2016.03.001.Search in Google Scholar

20. Böhmer, R., Jeffrey, K. R., Vogel, M. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 50, 87–174; https://doi.org/10.1016/j.pnmrs.2006.12.001.Search in Google Scholar

21. Böhmer, R., Storek, M., Vogel, M. In Modern Methods in Solid-state NMR: A Practitioner’s Guide, New Developments in NMR; The Royal Society of Chemistry: Cambridge, 2018; pp. 193–230.10.1039/9781788010467-00193Search in Google Scholar

22. Böhmer, R., Jörg, T., Qi, F., Titze, A. Chem. Phys. Lett. 2000, 316, 419–424; https://doi.org/10.1016/s0009-2614(99)01297-x.Search in Google Scholar

23. Wilkening, M., Küchler, W., Heitjans, P. Phys. Rev. Lett. 2006, 97, 065901; https://doi.org/10.1103/physrevlett.97.065901.Search in Google Scholar

24. Kuhn, A., Kunze, M., Sreeraj, P., Wiemhöffer, H.-D., Thangadurai, V., Wilkening, M., Heitjans, P. Solid State Nucl. Magn. Reson. 2012, 42, 2–8; https://doi.org/10.1016/j.ssnmr.2012.02.001.Search in Google Scholar PubMed

25. Graf, M., Kresse, B., Privalov, A. F., Vogel, M. Solid State Nucl. Magn. Reson. 2013, 51–52, 25–30; https://doi.org/10.1016/j.ssnmr.2013.01.001.Search in Google Scholar PubMed

26. Kuhn, A., Dupke, S., Kunze, M., Puravankara, S., Langer, T., Pöttgen, R., Winter, M., Wiemhöffer, H.-D., Eckert, H., Heitjans, P. J. Phys. Chem. C 2014, 118, 28350–28360; https://doi.org/10.1021/jp505386u.Search in Google Scholar

27. Storek, M., Tilly, J. F., Jeffrey, K. R., Böhmer, R. J. Magn. Reson. 2017, 282, 1–9; https://doi.org/10.1016/j.jmr.2017.06.010.Search in Google Scholar PubMed

28. Wilkening, M., Bork, D., Indris, S., Heitjans, P. Phys. Chem. Chem. Phys. 2002, 4, 3246–3251; https://doi.org/10.1039/b201193j.Search in Google Scholar

29. Heitjans, P., Indris, S. J. Phys. Condens. Matter 2003, 15, R1257–R1289; https://doi.org/10.1088/0953-8984/15/30/202.Search in Google Scholar

30. Faske, S., Eckert, H., Vogel, M. Phys. Rev. B 2008, 77, 104301; https://doi.org/10.1103/physrevb.77.104301.Search in Google Scholar

31. Storek, M., Böhmer, R., Martin, S. W., Larink, D., Eckert, H. J. Chem. Phys. 2012, 137, 124507; https://doi.org/10.1063/1.4754664.Search in Google Scholar PubMed

32. Langer, J., Epp, V., Heitjans, P., Mautner, F. A., Wilkening, M. Phys. Rev. B 2013, 88, 094304; https://doi.org/10.1103/physrevb.88.094304.Search in Google Scholar

33. Dupke, S., Langer, T., Winter, F., Pöttgen, R., Winter, M., Eckert, H. Solid State Nucl. Magn. Reson. 2015, 65, 99–106; https://doi.org/10.1016/j.ssnmr.2014.11.003.Search in Google Scholar PubMed

34. Haaks, M., Martin, S. W., Vogel, M. Phys. Rev. B 2017, 96, 104301; https://doi.org/10.1103/physrevb.96.104301.Search in Google Scholar

35. Vyalikh, A., Schikora, M., Seipel, K. P., Weigler, M., Zschornak, M., Meutzner, F., Münchgesang, W., Nestler, T., Vizgalov, V., Itkis, D., Privalov, A. F., Vogel, M., Meyer, D. C. J. Mater. Chem. A 2019, 7, 13968–13977; https://doi.org/10.1039/c8ta11686e.Search in Google Scholar

36. Winter, E., Seipel, P., Miß, V., Spannenberger, S., Roling, B., Vogel, M. J. Phys. Chem. C 2020, 124, 28614–28622; https://doi.org/10.1021/acs.jpcc.0c08801.Search in Google Scholar

37. Gabriel, J., Petrov, O. V., Kim, Y., Martin, S. W., Vogel, M. Solid State Nucl. Magn. Reson. 2015, 70, 53–62; https://doi.org/10.1016/j.ssnmr.2015.06.004.Search in Google Scholar PubMed

38. Bloembergen, N., Purcell, E. M., Pound, R. V. Phys. Rev. 1948, 73, 679–712.10.1103/PhysRev.73.679Search in Google Scholar

39. Bertermann, R., Müller-Warmuth, W. Z. Naturforsch 1998, 53 a, 863–873; https://doi.org/10.1515/zna-1998-10-1110.Search in Google Scholar

40. Kruk, D., Herrmann, A., Rössler, E. A. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 63, 33–64; https://doi.org/10.1016/j.pnmrs.2011.08.001.Search in Google Scholar PubMed

41. Fujara, F., Kruk, D., Privalov, A. F. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 82, 39–69; https://doi.org/10.1016/j.pnmrs.2014.08.002.Search in Google Scholar PubMed

42. Schneider, S., Vogel, M. J. Chem. Phys. 2018, 149, 104501; https://doi.org/10.1063/1.5047825.Search in Google Scholar PubMed

43. Schneider, S., Vogel, M. J. Chem. Phys. 2020, 153, 244501; https://doi.org/10.1063/5.0036079.Search in Google Scholar PubMed

44. Tanner, J. E. J. Chem. Phys. 1970, 52, 2523–2526; https://doi.org/10.1063/1.1673336.Search in Google Scholar

45. Kärger, J., Avramovska, M., Freude, D., Haase, J., Hwang, S., Valiullin, R. Adsorption 2021, 27, 453–484; https://doi.org/10.1007/s10450-020-00290-9.Search in Google Scholar

46. Maldonado-Manso, P., Martín-Sedeño, M., Bruque, S., Sanz, J., Losilla, E. R. Solid State Ionics 2007, 178, 43–52; https://doi.org/10.1016/j.ssi.2006.11.016.Search in Google Scholar

47. Arbi, K., Bucheli, W., Jiménez, R., Sanz, J. J. Eur. Ceram. Soc. 2015, 35, 1477–1484; https://doi.org/10.1016/j.jeurceramsoc.2014.11.023.Search in Google Scholar

48. Mason, J., Ed. Multinuclear NMR; Plenum Press: New York, 1987.10.1007/978-1-4613-1783-8Search in Google Scholar

Received: 2021-08-11
Accepted: 2021-09-15
Published Online: 2021-10-11
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Special issue on the occasion of the 75th birthday of Paul Heitjans
  4. Contribution to Special Issue dedicated to Paul Heitjans
  5. Unusual cation coordination in nanostructured mullites
  6. A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
  7. Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
  8. Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
  9. Status and progress of ion-implanted βNMR at TRIUMF
  10. How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
  11. Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
  12. Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
  13. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
  14. Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
  15. Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
  16. How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
  17. Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
  18. Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
  19. Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
  20. On the CaF2-BaF2 interface
  21. The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
  22. Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
  23. Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
  24. Ionic transport in K2Ti6O13
  25. F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
  26. An overview of thermotransport in fluorite-related ionic oxides
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3109/html
Scroll to top button