Abstract
The synthesis of nanoparticles and nanopowders is in principle not difficult. Consequently, various methods on a laboratory and industrial scale have been developed in the last century. However, in the last decades it became obvious that the control of synthesis and processing is required to develop nanocrystalline materials with novel functional properties leading to specific applications. The potential of nanostructures was recognized through the pioneering work of Gleiter in the early 80’s [1]. In this review, we show that chemical vapour synthesis allows the production of nanostructured materials with tailored microstructures and properties.
-
The authors gratefully acknowledge the important contributions by our collaborators V.V. Srdic, G. Miehe, T.Weirich, U. Keiderling, Subramshu Bhattacharya, Sarbari Bhattacharya, V. Buschmann, P. Roth, D. Lindackers, C. Jansen, H. Wiggers, K.A. Padmanabhan and G.B. Hoflund, and the following Ph.D. and diploma students R. Nitsche, S. Klein, S. Köbel, S. Seifried, U. Betz, A. Möller, P. Mondal, I.-K. Lee, A. Benker, M. Schallehn, F. Säuberlich, S. Roth, H. Sieger, J. Seydel, Y.-S. Cho, J. Brehm, Kranthi Kumar. The research was generously funded by the following funding agencies: the German Science Foundation (DFG), the Alexander von Humboldt Foundation (AvH), the Federal Ministry of Education and Research (BMBF), the German Academic Exchange Programme (DAAD), the Ministry of Science and Education of Hessen, and the Large Scale Facility Activity of the Training and Mobility of Researchers Programme of the European Commission.
References
[1] H. Gleiter: Prog. Mat. Sci. 33 (1989) 223.10.1016/0079-6425(89)90001-7Search in Google Scholar
[2] M. Winterer: Nanocrystalline Ceramics – Synthesis and Structure, Springer, Berlin (2002).10.1007/978-3-662-04976-1Search in Google Scholar
[3] V.V. Srdic, M. Winterer, A. Möller, G. Miehe, H. Hahn: J. Am. Cer. Soc. 84 (2001) 2771.10.1111/j.1151-2916.2001.tb01093.xSearch in Google Scholar
[4] D. Vollath, D.V. Szabo, J. Fuchs: Nanostruct. Mat. 12 (1999) 433.10.1016/S0965-9773(99)00152-XSearch in Google Scholar
[5] M. Schallehn, M. Winterer, U. Keiderling, T. Weirich, H. Hahn: Chem. Vap. Dep. 9 (2003) 40.10.1002/cvde.200290006Search in Google Scholar
[6] M. Schallehn, V. Lorenzen, J. Seydel, H. Hahn: Mat. Res. Soc. Symp. Proc. 740, (2003) I11.12.1.10.1557/PROC-740-I11.12Search in Google Scholar
[7] S. Seifried, M.Winterer, H. Hahn: Chem. Vap. Dep. 6 (2000) 239.10.1002/1521-3862(200010)6:5<239::AID-CVDE239>3.0.CO;2-QSearch in Google Scholar
[8] J. Seydel, M. Winterer, H. Hahn: Mat. Res. Soc. Symp. Proc. 676 (2001) Y8.14.1.10.1557/PROC-676-Y8.14Search in Google Scholar
[9] S. Seifried, M. Winterer, H. Hahn: “Functional Graded Materials 1998”, W.A. Kaysser (Ed.), Trans Tech Publications (1999) 277.10.4028/www.scientific.net/MSF.308-311.277Search in Google Scholar
[10] D. Lindackers, M.D.G. Strecker, P. Roth: Nanostruct. Mat. 4 (1994) 545.10.1016/0965-9773(94)90062-0Search in Google Scholar
[11] In-Kyum Lee, M. Winterer, H. Hahn, C. Janzen, D. Lindackers, P. Roth: Mat. Res. Soc. Symp. Proc. 703 (2002) 173.Search in Google Scholar
[12] S. Tsantilis, S.E. Pratsinis: AIChE J., 46 (2000) 407.10.1002/aic.690460218Search in Google Scholar
[13] A. Schild, A. Gutsch, H. Mühlenweg, S.E. Pratsinis: J. Nanopart. Res. 1 (1999) 305.10.1023/A:1010025121980Search in Google Scholar
[14] S.E. Pratsinis, P.T. Spicer: Chem. Eng. Sci. 53 (1998) 1861.10.1016/S0009-2509(98)00026-8Search in Google Scholar
[15] P. Krasnochtchekov, K. Albe, R.S. Averback: Z. Metallkd. 94 (2003) to be published.10.3139/146.031098Search in Google Scholar
[16] H. Sieger, M. Winterer, H. Mühlenweg, G. Michael, H. Hahn: submitted to Chem. Vap. Dep. (2003).Search in Google Scholar
[17] H. Sieger, M. Winterer, U. Keiderling, H. Hahn: Mat. Res. Soc. Symp. Proc. 671 (2001) M 2.5.10.1557/PROC-671-M2.5Search in Google Scholar
[18] H. Briesen, A. Fuhrmann S.E. Pratsinis: Chem. Eng. Sci. 53 (1998) 4105.10.1016/S0009-2509(98)00219-XSearch in Google Scholar
[19] M. Schallehn: Ph.D. Thesis, TU Darmstadt (2003).Search in Google Scholar
[20] J. Kanters, U. Eisele, J. Rödel: Acta Mater. 48 (2000) 1239.10.1016/S1359-6454(99)00433-4Search in Google Scholar
[21] V.V. Srdic, M. Winterer, H. Hahn: J. Am. Ceram. Soc. 83 (2000) 1853.10.1111/j.1151-2916.2000.tb01481.xSearch in Google Scholar
[22] S.C. Liao, Y.J. Chen, B.H. Kear, W.E. Mayo: Nanostruct. Mat. 10 (1998) 1063.10.1016/S0965-9773(98)00125-1Search in Google Scholar
[23] S.C. Liao, W.E. Mayo, K.D. Pae: Acta Mater. 45 (1997) 4027.10.1016/S1359-6454(97)00087-6Search in Google Scholar
[24] H. Hahn, K.A. Padmanabhan: Phil. Mag. B 76 (1997) 559.10.1080/01418639708241122Search in Google Scholar
[25] U. Betz, K.A. Padmanabhan, H. Hahn: J. Mat. Sci. 36 (2001) 5811.10.1023/A:1012956005571Search in Google Scholar
[26] H. van Swygenhoven, P.M. Derlet, A. Hasnaoui: Phys. Rev. B 66 (2002) 024101.10.1103/PhysRevB.66.024101Search in Google Scholar
[27] C.E. Krill, R. Birringer: Phil. Mag. 77 (1998) 621.10.1080/01418619808224072Search in Google Scholar
[28] V. Buschmann, S. Klein, H. Fuess, H. Hahn: J. Crystal Growth 193 (1998) 335.10.1016/S0022-0248(98)00537-5Search in Google Scholar
[29] V.V. Srdic, M.Winterer, H. Hahn: J. Am. Cer. Soc. 83 (2000) 729.10.1111/j.1151-2916.2000.tb01266.xSearch in Google Scholar
[30] H. Ferkel, W. Riehemann: Nanostruct. Mat. 7 (1996) 835.10.1016/S0965-9773(96)00055-4Search in Google Scholar
[31] G.B. Hoflund, Z. Li, W.S. Epling, T. Göbel, P. Schneider, H. Hahn: Reaction Kinetics and Catalysis Letters 70 (2000) 97.10.1023/A:1010362632223Search in Google Scholar
[32] T.J. Webster, R.W. Siegel, R. Bizios: Biomaterials 20 (1999) 1221.10.1016/S0142-9612(99)00020-4Search in Google Scholar
[33] Yong-Sang Cho: Ph. D. Thesis, TU Darmstadt (2003).Search in Google Scholar
[34] U.P. Schönholzer, L.J. Gauckler: Adv. Mater. 11 (1999) 630.10.1002/(SICI)1521-4095(199906)11:8<630::AID-ADMA630>3.0.CO;2-YSearch in Google Scholar
[35] J. Seydel: Ph. D. Thesis, TU Darmstadt (2003).Search in Google Scholar
[36] S. Seifried: Ph. D. Thesis, TU Darmstadt (2001).Search in Google Scholar
© 2003 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
- Interface stress in nanocrystalline materials
- Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
- Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
- Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
- Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
- Nanoceramics by chemical vapour synthesis
- Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
- Simulations of the inert gas condensation processes
- Unconventional deformation mechanism in nanocrystalline metals?
- Alloying reactions in nanostructured multilayers during intense deformation
- Impact of grain boundary character on grain boundary kinetics
- Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
- Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
- Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
- New materials from non-intuitive composite effects
- On the line defects associated with grain boundary junctions
- Young’s modulus in nanostructured metals
- The kinetics of phase formation in an ultra-thin nanoscale layer
- Notifications/Mitteilungen
- Personal/Personelles
- News
- DGM Events