Home Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
Article
Licensed
Unlicensed Requires Authentication

Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform

  • Alexandra Poturnayová , Maja Šnejdárková , Gabriela Castillo , Peter Rybár , Michael Leitner , Andreas Ebner and Tibor Hianik EMAIL logo
Published/Copyright: November 28, 2014
Become an author with De Gruyter Brill

Abstract

The thickness shear mode acoustic method was used to study the binding of thrombin to DNA aptamers immobilised on the gold surface covered by DNA tetrahedrons. The binding of thrombin to conventional aptamers sensitive to fibrinogen (FBT) and heparin (HPT) exosites as well as to HPT in a loop configuration (HPTloop) made it possible to determine the constant of dissociation (KD) and the limit of detection (LOD). The sensing system composed of a HPTloop was characterised by KD = (66.7 ± 22.7) nM, which was almost twice as low as that of FBT and HPT. For this biosensor, a lower LOD of 5.2 nM compared with 17 nM for conventional HPT aptamers was also obtained. Less sensitive sensors based on FBT aptamers revealed an LOD of 30 nM which is in agreement with the lower affinity of these aptamers to thrombin in comparison with that of HPT. The surface concentration of DNA tetrahedrons was determined by the electrochemical method using [Ru(NH3)6]3+ as a redox probe. These experiments confirmed that the “step by step” method of forming the sensing layer, consisting first in chemisorption of DNA tetrahedrons onto a gold surface and then in hybridisation of the aptamer-supporting part with complementary oligos at the top of the tetrahedron, is preferable. In addition, atomic force microscopy was applied to analyse the topography of the gold layers modified stepwise by DNA tetrahedrons, DNA aptamers and thrombin. The height profiles of the layers were in reasonable agreement with the dimensions of the adsorbed molecules. The results indicate that DNA tetrahedrons represent an efficient platform for immobilisation of aptamers.

References

Abi, A., Lin, M. H., Pei, H., Fan, C. H., Ferapontova, E. E., & Zuo, X. L. (2014). Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. ACS Applied Materials & Interfaces, 6, 8928-8931. DOI: 10.1021/am501823q.10.1021/am501823qSearch in Google Scholar

Aldaye, A. F., Palmer, A. L., & Sleiman, H. F. (2008). Assembling materials with DNA as the guide. Science, 321, 1795-1799. DOI: 10.111126/science.1154533.Search in Google Scholar

Blanchard, C. R. (1996). Atomic force microscopy. The Chemical Educator, 1, 1-8. DOI: 10.1007/s00897960059a.10.1007/s00897960059aSearch in Google Scholar

Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., & Toole, J. J. (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355, 564-566. DOI: 10.1038/355564a0.10.1038/355564a0Search in Google Scholar

Brummel-Ziedins, K. E., Vossen, C. Y., Butenas, S., Mann, K. G., & Rosendaal, F. R. (2005). Thrombin generation profiles in deep venous thrombosis. Journal of Thrombosis Haemostasis, 3, 2497-2505. DOI: 10.1111/j.1538-7836.2005. 01584.x. Search in Google Scholar

Castro, C. E., Kilchherr, F., Kim, D. N., Shiao, E. L.,Wauer, T., Wortmann, P., Bathe, M., & Dietz, H. (2011). A primer to scaffolded DNA origami. Nature Methods, 8, 221-229. DOI: 10.1038/nmeth.1570.10.1038/nmeth.1570Search in Google Scholar

Cavendish, J. J., Fugit, R. V., & Safani, M. (2004). Role of antiplatelet theraphy in cardiovascular disease I: acute coronary synndromes. Current Medical Research and Opinion, 20, 1839-1843. DOI: 10.1185/030079904x10665.10.1185/030079904X10665Search in Google Scholar

Cavic, B. A., & Thompson, M. (2002). Interfacial nucleic acid chemistry studied by acoustic shear wave propagation. Analytica Chimica Acta, 469, 101-113. DOI: 10.1016/s0003-2670(01)01565-3.10.1016/S0003-2670(01)01565-3Search in Google Scholar

Chechik, V., & Stirling, C. J. M. (1999). Gold-thiol selfassembled monolayers. In S. Patai, & Z. Rapport (Eds.), The chemistry of organic derivates of gold and silver (pp. 551-639). Hoboken, NJ, USA: Wiley.Search in Google Scholar

Chen, Q., Tang, W., Wang, D. Z., Wu, X. J., Li, N., & Liu, F. (2010). Amplified QCM-D biosensor for protein based on aptamer functionalized gold nanoparticles. Biosensors and Bioelectronics, 26, 575-579. DOI: 10.1016/j.bios.2010.07.034.10.1016/j.bios.2010.07.034Search in Google Scholar PubMed

Chou, S. H., Chin, K. H., & Wang, A. H. J. (2005). DNA aptamers as potential anti-HIV agents. Trends in Biochemical Sciences, 30, 231-234. DOI: 10.1016/j.tibs.2005.03.004.10.1016/j.tibs.2005.03.004Search in Google Scholar PubMed

Ellis, J. S., & Thompson, M. (2004). Acoustic coupling at multiple interfaces and the liquid phase response of the thickness shear-mode acoustic wave sensor. Chemical Communications, 2004, 1310-1311. DOI: 10.1039/b402822h.10.1039/b402822hSearch in Google Scholar PubMed

Engel, A., & Müller, D. J. (2000). Observing single biomolecules at work with the atomic force microscope. Nature Structural & Molecular Biology, 7, 715-718. DOI: 10.1038/78929.10.1038/78929Search in Google Scholar PubMed

Finklea, H. O. (2000). Self-assembled monolayers on electrodes. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry: Instrumentation and applications (pp. 1-26). New York, NY, USA: Wiley.Search in Google Scholar

Fuentes-Prior, P., Iwanaga, Y., Huber, R., Pagila, R., Rumennik, G., Seto, M., Morser, J., Light, D. R., & Bode, W. (2004). Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature, 404, 518-525. DOI: 10.1038/35006683.10.1038/35006683Search in Google Scholar PubMed

Ge, B. X., Huang, Y. C., Sen, D., & Yu, H. Z. (2007). Electrochemical investigation of DNA-modified surfaces: From quantitation methods to experimental conditions. Journal of Electroanalytical Chemistry, 602, 156-162. DOI: 10.1016/j.jelechem.2006.12.008.10.1016/j.jelechem.2006.12.008Search in Google Scholar

Gooding, J. J., Erokhin, P., Losic, D., Yang, W., Policarpio, V., Liu, J. G., Ho, F. M., Situmorang, M., Hibbert, D. B., & Shapter, J. G. (2001). Parameters important in fabricating enzyme electrodes using self-assembled monolayers of alkanethiols. Analytical Sciences, 17, 3-9. DOI: 10.2116/analsci.17.3.10.2116/analsci.17.3Search in Google Scholar PubMed

Goodman, R. P., Berry, R. M., & Turberfield, A. J. (2004). The single-step synthesis of a DNA tetrahedron. Chemical Communications, 2004, 1372-1373. DOI: 10.1039/b402293a.10.1039/b402293aSearch in Google Scholar PubMed

Goodman, R. P., Schaap, I. A. T., Tardin, C. F., Erben, C. M., Berry, R. M., Schmidt, C. F., & Turberfield, A. J. (2005). Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 310, 1661-1665. DOI: 10.1126/science.1120367.10.1126/science.1120367Search in Google Scholar PubMed

Hamaguchi, N., Ellington, A., & Stanton, M. (2001). Aptamer beacons for the direct detection of protein. Analytical Biochemistry, 294, 126-131. DOI: 10.1006/abio.2001.5169.10.1006/abio.2001.5169Search in Google Scholar PubMed

Hasegawa, H., Taira, K. I., Sode, K., & Ikebukuro, K. (2008). Improvement of aptamer affinity by dimerization. Sensors, 8, 1090-1098. DOI: 10.3390/s8021090.10.3390/s8021090Search in Google Scholar PubMed PubMed Central

Hianik, T., Ostatna, V., Zajacova, Z., Stoikova, E., & Evtugyn, G. (2005). Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioor ganic & Medicinal Chemistry Letters, 15, 291-295. DOI: 10.1016/j.bmcl.2004.10.083.10.1016/j.bmcl.2004.10.083Search in Google Scholar PubMed

Hianik, T., & Wang, J. (2009). Electrochemical aptasensors - recent achievements and perspectives. Electroanalysis, 21, 1223-1225. DOI: 10.1002/elan.200904566.10.1002/elan.200904566Search in Google Scholar

Hianik, T., Grman, I., & Karpisova, I. (2009). The effect of DNA aptamer configuration on the sensitivity of thrombin detection surface by acoustic method. Chemical Communications, 2009, 6303-6305. DOI: 10.1039/b910981a.10.1039/b910981aSearch in Google Scholar PubMed

Hinterdorfer, P., & Dufr˛ene, Y. F. (2006). Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods, 3, 347-355. DOI: 10.1038/nmeth871.10.1038/nmeth871Search in Google Scholar

Holland, C. A., Henry, A. T., Whinna, H. C., & Church, F. C. (2000). Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Letters, 484, 87-91. DOI: 10.1016/s0014-5793(00)02131-1.10.1016/S0014-5793(00)02131-1Search in Google Scholar

Homann, M., & G¨oringer, H. U. (1999). Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Research, 27, 2006-2014. DOI: 10.1093/nar/27.9.2006.10.1093/nar/27.9.2006Search in Google Scholar PubMed PubMed Central

Huntington, J. A. (2005). Molecular recognition mechanisms of thrombin. Journal of Thrombosis and Haemostasis, 3, 1861-1872. DOI: 10.1111/j.1538-7836.2005.01363.x.10.1111/j.1538-7836.2005.01363.xSearch in Google Scholar PubMed

Jayasena, S. D. (1999). Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 45, 1628-1650.10.1093/clinchem/45.9.1628Search in Google Scholar

Karshikov, A., Bode, W., Tulinsky, A., & Stone, S. R. (1992). Electrostatic interactions in the association of proteins: An analysis of the thrombin-hirudin complex. Protein Science, 1, 727-735. DOI: 10.1002/pro.5560010605.10.1002/pro.5560010605Search in Google Scholar PubMed PubMed Central

Khulbe, K. C., Feng, C. Y., & Matsuura, T. (2008). Synthetic polymer membranes: characterization by atomic force microscopy. Heidelberg, Gemany: Springer. DOI: 10.1007/978-3-540-73994-4 6.10.1007/978-3-540-73994-4Search in Google Scholar

Kotia, R. B., Li, L., & McGown, L. B. (2000). Separation of nontarget compounds by DNA aptamers. Analytical Chemistry, 72, 827-831. DOI: 10.1021/ac991112f.10.1021/ac991112fSearch in Google Scholar PubMed

Krauss, I. R., Merlino, A., Vergara, A., & Sica, F. (2013). An overview of biological macromolecule crystallization. International Journal of Molecular Sciences, 14, 11643-11691. DOI: 10.3390/ijms140611643.10.3390/ijms140611643Search in Google Scholar PubMed PubMed Central

Lao, R. J., Song, S. P., Wu, H. P., Wang, L. H., Zhang, Z. Z., He, L., & Fan, C. H. (2005). Electrochemical interrogation of DNA monolayers on gold surfaces. Analytical Chemistry, 77, 6475-6480. DOI: 10.1021/ac050911x.10.1021/ac050911xSearch in Google Scholar PubMed

Lao, Y. H., Peck, K., & Chen, L. C. (2009). Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Analytical Chemistry, 81, 1747-1754. DOI: 10.1021/ac801285a.10.1021/ac801285aSearch in Google Scholar

Leitner, M., Mitchell, N., Kastner, M., Schlapak, R., Gruber, H. J., Hinterdorfer, P., Howorka, S., & Ebner, A. (2011). Single-molecule AFM characterization of individual chemically tagged DNA tetrahedra. ACS Nano, 5, 7048-7054. DOI: 10.1021/nn201705p.10.1021/nn201705pSearch in Google Scholar

Leva, S., Lichte, A., Burmeister, J., Muhn, P., Jahnke, B., Fesser, D., Erfurth, J., Burgstaller, P., & Klussmann, S. (2002). GnRH binding RNA and DNA spiegelmers: A novel approach toward GnRH antagonism. Chemistry & Biology, 9, 351-359. DOI: 10.1016/s1074-5521(02)00111-4.10.1016/S1074-5521(02)00111-4Search in Google Scholar

Liss, M., Petersen, B., Wolf, H., & Prohaska, E. (2002). An aptamer-based quartz crystal protein biosensor. Analytical Chemistry, 74, 4488-4495. DOI: 10.1021/ac011294p.10.1021/ac011294pSearch in Google Scholar

Luzi, E., Minunni, M., Tombelli, S., & Mascini, M. (2003). New trends in affinity sensing aptamers for ligand binding. TrAC Trends in Analytical Chemistry, 22, 810-818. DOI: 10.1016/s0165-9936(03)01208-1.10.1016/S0165-9936(03)01208-1Search in Google Scholar

Macaya, R. F., Schultze, P., Smith, F. W., Roe, J. A., & Feigon, J. (1993). Thrombin binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proceedings of the National Academy of Sciences of the United States of America, 90, 3745-3749. DOI: 10.1073/pnas.90.8.3745.10.1073/pnas.90.8.3745Search in Google Scholar PubMed PubMed Central

Marson, G., Palumbo, M., & Sissi, C. (2012). Folding versus charge: understanding selective target recognition by the thrombin aptamers. Current Pharmaceutical Design, 18, 2027-2035. DOI: 10.2174/138161212799958323.10.2174/138161212799958323Search in Google Scholar PubMed

Mayer, G., M¨uller, J., Mack, T., Freitag, D. F., H¨over, T., P¨otzsch, B., & Heckel, A. (2009). Differential regulation of protein subdomain activity with caged bivalent ligands. Chembiochem, 10, 654-657. DOI: 10.1002/cbic.200800814.10.1002/cbic.200800814Search in Google Scholar PubMed

Miodek, A., Poturnayova, A., Šnejdarkova, M., Hianik, T., & Korri-Youssoufi, H. (2013). Binding kinetics of human cellular prions detection by DNA aptamers immobilized on a conducting polypyrrole. Analytical and Bioanalytical Chemistry, 405, 2505-2514. DOI: 10.1007/s00216-012-6665-4.10.1007/s00216-012-6665-4Search in Google Scholar PubMed

Mitchell, N., Schlapak, R., Kastner, M., Armitage, D., Chrzanowski, W., Riener, J., Hinterdorfer, P., Ebner, A., & Howorka, S. (2009). A DNA nanostructure for the functional assembly of chemical groups with tunable stoichiometry and defined nanoscale geometry. Angewandte Chemie, 121, 533-535. DOI: 10.1002/ange.200804264.10.1002/ange.200804264Search in Google Scholar

Murphy, M. C., Rasnik, I., Cheng, W., Lohman, T. M., & Ha, T. (2004). Probing single stranded DNA conformational flexibility using fluorescence spectroscopy. Biophysical Journal, 86, 2530-2537. DOI: 10.1016/s0006-3495(04)74308-8.10.1016/S0006-3495(04)74308-8Search in Google Scholar

Nečas, D., & Klapetek, P. (2012). Gwyddion: an open-source software for SPM data analysis. Central European Journal of Physics, 10, 181-188. DOI: 10.2478/s11534-011-0096-2.10.2478/s11534-011-0096-2Search in Google Scholar

Neidle, S. (2002). Nucleic acid structure and recognition. Oxford, UK: Oxford University Press.Search in Google Scholar

Olson,W. K. (1975). Configurational statistics of polynucleotide chains. A single virtual bond treatment. Macromolecules, 8, 272-275. DOI: 10.1021/ma60045a006.10.1021/ma60045a006Search in Google Scholar PubMed

Park, B. W., Yoon, D. Y., & Kim, D. S. (2011). Formation and modification of a binary self-assembled monolayer on a nano-structured gold electrode and its structural characterization by electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 661, 329-335. DOI: 10.1016/j.jelechem.2011.08.013.10.1016/j.jelechem.2011.08.013Search in Google Scholar

Pei,H., Lu,N., Wen, Y., Song, S., Liu,Y., Yan, H., & Fan, C. H. (2010). A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Advanced Materials, 22, 4754-4758. DOI: 10.1002/adma.201002767.10.1002/adma.201002767Search in Google Scholar PubMed PubMed Central

Pérez-Luna, V. H., O’Brien, M. J., Opperman, K. A., Hampton, P. D., Lopez, G. P., Klumb, L. A., & Stayton, P. S. (1999). Molecular recognition between genetically engineered streptavidin and surface-bound biotin. Journal of the American Chemical Society, 121, 6469-6478. DOI: 10.1021/ja983984p.10.1021/ja983984pSearch in Google Scholar

Poirier, G. E., & Pylant, E. D. (1996). The self-assembly mechanism of alkanethiols on Au(111). Science, 272, 1145-1148. DOI: 10.1126/science.272.5265.1145.10.1126/science.272.5265.1145Search in Google Scholar PubMed

Poniková, S., Antalik, M., & Hianik, T. (2008). A circular dichroism study of the stability of guanine quadruplexes of thrombin DNA aptamers at presence of K+ and Na+ ions. General Physiology and Biophysics, 27, 271-277.Search in Google Scholar

Porschewski, P., Grattinger, M. A. M., Klenzke, K., Erpenbach, A., Blind,M. R., & Schafer, F. (2006). Using aptamers as capture reagents in bead-based assay system for diagnostics and hit identification. Journal of Biomolecular Screening, 390, 773-781. DOI: 10.1177/1087057106292138.10.1177/1087057106292138Search in Google Scholar PubMed

Poturnayová, A., Šnejdarkova, M., & Hianik, T. (2012). DNA aptamer configuration affects the sensitivity and binding kinetics of thrombin. Acta Chimica Slovaca, 5, 53-58. DOI: 10.2478/v10188-012-0009-z.10.2478/v10188-012-0009-zSearch in Google Scholar

Pricso, D. (1990). Markers of increased thrombin generation. Research in Clinic and Laboratory, 20, 217-225. DOI: 10.1007/bf02900706.10.1007/BF02900706Search in Google Scholar PubMed

Proske, D., Blank, M., Buhmann, R., & Resch, A. (2005). Aptamers-basic research, drug development and clinical application. Applied Microbiology and Biotechnology, 69, 367-374. DOI: 10.1007/s00253-005-0193-5.10.1007/s00253-005-0193-5Search in Google Scholar

Rajendran, M., & Ellington, A. D. (2008). Selection of fluorescent aptamer beacons that light up in the presence of zinc. Analytical and Bioanalytical Chemistry, 390, 1067-1075. DOI: 10.1007/s00216-007-1735-8.10.1007/s00216-007-1735-8Search in Google Scholar

Saenger, W. (1984). Principles of nucleic acid structure. New York, NY, USA: Springer.Search in Google Scholar

Schlapak, R., Danzberger, J., Armitage, D., Morgan, D., Ebner, A., Hinterdorfer, P., Pollheimer, P., Gruber, H. J., Schaffler, F., & Howorka, S. (2012). Nanoscale DNA tetrahedra improve biomolecular recognition on patterned surfaces. Small, 8, 89-97. DOI: 10.1002/smll.201101576.10.1002/smll.201101576Search in Google Scholar

Shangguan, D., Li, Y., Tang, Z. W., Cao, Z. C., Chen, H. W., Mallikaratchy, P., Sefah, K., Yang, C. J., & Tan, W. H. (2006). Aptamers evolved from live cells as effective molecular probes for cancer study. Proceedings of the National Academy of Sciences of the United States of America, 103, 11838-11843. DOI: 10.1073/pnas.0602615103.10.1073/pnas.0602615103Search in Google Scholar

Shuman, M. A., & Majerus, P. W. (1976). The measurement of thrombin in clotting blood by radioimmunoassay. Journal of Clinical Investigation, 58, 1249-1258. DOI: 10.1172/jci108579.10.1172/JCI108579Search in Google Scholar

Šnejdarková, M., Svobodova, L., Polohova, V., & Hianik, T. (2008). The study of surface properties of an IgE-sensitive aptasensor using an acoustic method. Anaytical and Bioanalytical Chemistry, 390, 1087-1091. DOI: 10.1007/s00216-007-1749-2.10.1007/s00216-007-1749-2Search in Google Scholar

Stobiecka, M., & Hepel, M. (2010). Rapid functionalization of metal nanoparticles by moderator-tunable ligand-exchange process for biosensor design. Sensor and Actuators B: Chemical, 149, 373-380. DOI: 10.1016/j.snb.2010.06.049.10.1016/j.snb.2010.06.049Search in Google Scholar

Stubbs, M. T., & Bode, W. (1995). The clot thickens: clues provided by thrombin structure. Trends in Biochemical Sciences, 20, 23-28. DOI: 10.1016/s0968-0004(00)88945-8.10.1016/S0968-0004(00)88945-8Search in Google Scholar

Tasset, D. M., Kubik, M. F., & Steiner, W. (1997). Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology, 272, 688-698. DOI: 10.1006/jmbi.1997.1275.10.1006/jmbi.1997.1275Search in Google Scholar PubMed

Truong, K. D., & Rowntree, P. A. (1996). Formation of selfassembled butanethiol monolayers on Au substrates: Spectroscopic evidence for highly ordered island formation in submonolayer films. Journal of Physical Chemistry, 100, 19917-19926. DOI: 10.1021/jp953221d.10.1021/jp953221dSearch in Google Scholar

Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505-510. DOI: 10.1126/science. 2200121.10.1126/scienceSearch in Google Scholar

Viglasky, V., & Hianik, T. (2013). Potential uses of Gquadruplex- forming aptamers. General Physiology and Biophysics, 32, 149-172. DOI: 10.4149/gpb 2013019.Search in Google Scholar

Wang, J. (2006). Analytical electrochemistry. New York, NY, USA: Wiley.10.1002/0471790303Search in Google Scholar

Wen, Y. L., Pei, H., Shen, Y., Xi, J. J., Lin, M. H., Lu, N., Shen, X. Z., Li, J., & Fan, C. H. (2012). DNA nanostructurebased interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. Scientific Reports, 2, 867. DOI: 10.1038/srep00867.10.1038/srep00867Search in Google Scholar PubMed PubMed Central

Woodward, J. T., & Schwartz, D. K. (1996). In situ observation of self-assembled monolayer growth. Journal of the American Chemical Society, 118, 786-7862. DOI: 10.1021/ja961524v.10.1021/ja961524vSearch in Google Scholar

Xu, Y., Ishizuka, T., Kurabayashi, K., & Komiyama, M. (2009). Consecutive formation of G-quadruplexes in human telomeric overhang DNA: A protective capping structure for telomere ends. Angewandte Chemie, 121, 7973-7976. DOI: 10.1002/ange.200903858.10.1002/ange.200903858Search in Google Scholar

Yamada, R., & Uosaki, K. (1997). In situ, real time monitoring of the self-assembly process of decanethiol on Au(111) in liquid phase. A scanning tunneling microscopy investigation. Langmuir, 13, 5218-5221. DOI: 10.1021/la970418j.10.1021/la970418jSearch in Google Scholar

Yang, X. J., Bing, T., Mei, H. C., Fang, C. L., Cao, Z. H., & Shangguan, D. (2011). Characterization and application of a DNA aptamer binding to L-tryptophan. Analyst, 136, 577-585. DOI: 10.1039/c0an00550a. 10.1039/C0AN00550ASearch in Google Scholar

Received: 2014-5-10
Revised: 2014-8-12
Accepted: 2014-8-13
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0044/html
Scroll to top button