Home Wild boar (Sus scrofa) – reservoir host of Toxoplasma gondii, Neospora caninum and Anaplasma phagocytophilum in Slovakia
Article
Licensed
Unlicensed Requires Authentication

Wild boar (Sus scrofa) – reservoir host of Toxoplasma gondii, Neospora caninum and Anaplasma phagocytophilum in Slovakia

  • Katarína Reiterová EMAIL logo , Silvia Špilovská , Lucia Blaňarová , Markéta Derdáková , Andrea Čobádiová and Vladimír Hisira
Published/Copyright: March 30, 2016
Become an author with De Gruyter Brill

Abstract

In Central Europe the wild boar population is permanently growing and consequently Cf foodborne infections. In this study serological and molecular detection of Toxoplasma gondii and Neospora caninum in wild boars was evaluated. Moreover, same samples were screened for the presence and genetic variability of tick-borne bacterium Anaplasma phagocytophilum. Blood samples collected from 113 wild boars from Southern Slovakia were examined for antibodies to T. gondii by indirect and to N. caninum by competitive ELISA. The presence of parasitic DNA in blood samples was determined by standard or real time PCR techniques. Antibodies against T. gondii and N. caninum were detected in 45 (39.8%) and 38 (33.6%) animals, respectively. Females were more frequently infected for both pathogens than males. The high seropositivity against both coccidia indicates a permanent occurrence of these pathogens in the studied locality. T. gondii DNA was confirmed in five seropositive boars (4.4%) and N. caninum in 23 blood samples (20.4%). Three out of 23 N. caninum PCR positive animals did not show seropositivity. Three out of 113 blood samples of wild boars were positive for A. phagocytophilum (2.7%). The obtained A. phagocytophilum sequences were 100% identical with GenBankTM isolates from Slovak dog (KC985242); German horse (JF893938) or wild boar (EF143810) and red deer (EF143808) from Poland. Coinfections of T. gondii with N. caninum and N. caninum with A. phagocytophilum were detected in single cases. Results suggest a potential zoonotic risk of toxoplasmosis transmission to humans and the spread of neosporosis to farm animals.

Acknowledgements

The study was supported by the Slovak Scientific Grant Agency VEGA 2/0068/15 and partially by the project: Development of the diagnostic methods for the detection of tick-borne pathogens and the techniques for the preparation of the vaccine development (code ITMS: 26240220044), supported by the Research & Development Operational Programme funded by the ERDF (0.1).

References

Almería S., Vidal D., Ferrer D., Pabón M., Fernández de Mera M.I., Ruiz-Fons F., Alzaga V., Marco I., Calvete C., Lavin S., Gortazar C., López-Gatius F., Dubey J.P. 2007. Seroprevalence of Neospora caninum in non-carnivorous wildlife from Spain. Veterinary Parasitology, 143, 21–28. DOI:10.1016/j.vetpar.2006.07.02710.1016/j.vet-par.2006.07.027Search in Google Scholar

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–340210.1093/nar/25.17.3389Search in Google Scholar PubMed PubMed Central

Antolová D., Reiterová K., Dubinský P. 2007. Seroprevalence of Toxoplasma gondii in wild boars (Sus scrofa) in the Slovak Republic. Annals of Agricultural and Environmental Medicine, 14, 71–73Search in Google Scholar

Bártová E., Sedlák K., Literák I. 2006. Prevalence of Toxoplasma gondii and Neospora caninum antibodies in wild boars in the Czech Republic. Veterinary Parasitology, 142, 150–153. DOI: 10.1016/j.vetpar.2006.06.02210.1016/j.vetpar.2006.06.022Search in Google Scholar PubMed

Beral M., Rossi S., Aubert D., Gasqui P., Terrier M.E., Klein F., Villena I., Abrial D., Gilot-Fromont E., Richomme C., Hars J., Jourdain E. 2012. Environmental factors associated with the seroprevalence of Toxoplasma gondii in wild boars (Sus scrofa), France. EcoHealth 9, 303–309. DOI: 10.1007/s10393-012-0786-210.1007/s10393-012-0786-2Search in Google Scholar PubMed

Closa-Sebastià F., Casas-Díaz E., Cuenca R., Lavín S., Mentaberre G., Marco I., 2011. Antibodies to selected pathogens in wild boar (Sus scrofa) from Catalonia (NE Spain). European Journal of Wildlife Research, 57, 977–981. DOI: 10.1007/s10344010-0491-910.1007/s10344-010-0491-9Search in Google Scholar

Courtney J.W., Kostelnik L.M., Zeidner N.S., Massung R.F. 2004. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. Journal of Clinical Microbiology, 42, 3164–3168. DOI: 10.1128/JCM.42.7.31643168.200410.1128/JCM.42.7.31643168.2004Search in Google Scholar

Deksne G., Kirjušina M. 2013. Seroprevalence of Toxoplasma gondii in domestic pigs (Sus scrofa domestica) and wild boars (Sus scrofa) in Latvia. Journal of Parasitology, 99, 44–47. DOI: http://dx.doi.org/10.1645/GE-3187.1http://dx.doi.org/10.1645/GE-3187.1Search in Google Scholar PubMed

Dubey J.P. 2003. Review of Neospora caninum and neosporosis in animals. Korean Journal of Parasitology, 41, 1–1610.3347/kjp.2003.41.1.1Search in Google Scholar PubMed PubMed Central

Dubey J.P. 2009. Toxoplasmosis in man (Homo sapiens). In: Toxoplasmosis of animals and humans. (Sec. Eds.), CRC Press Inc. Florida, USA, pp. 313Search in Google Scholar

Ferroglio E., Bosio F., Trisciuoglio A., Zanet S. 2014. Toxoplasma gondii in sympatric wild herbivores and carnivores: epidemiology of infection in the Western Alps. Parasites & Vectors, 7, 196. http://www.parasitesandvectors.com/content/7/1/19610.1186/1756-3305-7-196Search in Google Scholar PubMed PubMed Central

Galindo R.C., Ayllón N., Smrdel K.S., Boadella M., Beltrán-Beck B., Mazariegos M., Garcia, N., de la Lastra J.M., Avsic-Zupanc T., Kocan K.M., Gortazar C., de la Fuente J. 2012. Gene expression profile suggests that pigs (Sus scrofa) are susceptible to Anaplasma phagocytophilum but control infection. Parasites & Vectors, 30, 181. DOI:10.1186/17563305-5-18110.1186/1756-3305-5-181Search in Google Scholar PubMed PubMed Central

Graham P., Bull B. 1998. Approximate standard errors and confidence intervals for indices of positive and negative agreement. Journal of Clinical Epidemiology, 51, 763–771. DOI: 10.1016/S0895-4356(98)00048-110.1016/S0895-4356(98)00048-1Search in Google Scholar

Humair P.F., Douet V., Morán Cadenas F., Schouls L.M., Van De Pol I., Gern L. 2007. Molecular identification of bloodmeal source in Ixodes ricinus ticks using12S rDNA as a genetic marker. Journal of Medical Entomology, 44, 869–880.DOI: http://dx.doi.org/10.1093/jmedent/44.5.869http://dx.doi.org/10.1093/jmedent/44.5.869">Search in Google Scholar

Laddomada A. 2000. Incidence and control of CSF in wild boar in Europe. Veterinary Microbiology, 73, 121–130. DOI: 10.1016/S0378-1135(00)00139-510.1016/S0378-1135(00)00139-5Search in Google Scholar

Lamoril J., Molina M.J., Gouvello A., Garin J.Y., Deybach C.J. 1996. Detection by PCR of Toxoplasma gondii in blood in the diagnosis of cerebral toxoplasmosis in patients with AIDS. Journal of Clinical Pathology, 49, 89–92. DOI:10.1136/jcp.49.1.8910.1136/jcp.49.1.89Search in Google Scholar PubMed PubMed Central

Liz, J.S., Sumner, J.W., Pfister, K., Brossard, M. 2002. PCR detection and serologicalevidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). Journal of Clinical Microbiology, 40, 892–897. DOI: 10.1128/JCM.40.3.892-897.200210.1128/JCM.40.3.892-897.2002Search in Google Scholar PubMed PubMed Central

Luptáková L., Bálent P., Valenčáková A., Hisira V., Petrovová, E. 2010. Detection of Toxoplasma gondii and Encephalitozoon spp. in wild boars by serological and molecular methods. Revue De Medecine Veterinaire, 161, 599–563Search in Google Scholar

Massung R.F., Slater K., Owens J.H., Nicholson W.L., Mather T.N., Solberg V.B., Olson J.G. 1998. Nested PCR assay for detection of granulocytic ehrlichiae. Journal of Clinical Microbiology, 36, 1090–109510.1128/JCM.36.4.1090-1095.1998Search in Google Scholar PubMed PubMed Central

McCann C.M., Vyse A.J., Salmon R.L., Thomas D., Williams D.J.L., McGarry J.W., Pebody, R., Trees A.J. 2008. Lack of serologic evidence of Neospora caninum in humans, England. Emerging Infectious Diseases, 14, 978–980.DOI: 10.3201/eid1406.07112810.3201/eid1406.071128Search in Google Scholar PubMed PubMed Central

Michalik J., Stańczak J., Cieniuch S., Racewicz M., Sikora B., Dabert M. 2012. Wild boars as hosts of human-pathogenic Anaplasma phagocytophilum, variants. Emerging Infectious Diseases, 18, 998–1001.DOI: http://dx.doi.org/10.3201/eid1806.110997http://dx.doi.org/10.3201/eid1806.110997Search in Google Scholar PubMed PubMed Central

Pastiu A.I., Györke A., Blaga R., Mircean V., Rosenthal B.M., Cozma V. 2013. In Romania, exposure to Toxoplasma gondii occurs twice as often in swine raised for familial consumption as in hunted wild boar, but occurs rarely, if ever, among fattening pigs raised in confinement. Parasitology Research, 112, 2403–2407. DOI: 10.1007/s00436-013-3553-z10.1007/s00436013-3553-zSearch in Google Scholar

Petrovec M., Sixl W., Schweiger R., Mikulasek S., Elke L., Wüst, G., Marth E., Strašek K., Stünzner, D.O., Avsic-Zupanc T. 2003. Infections of wild animals with Anaplasma phagocytophila in Austria and the Czech Republic. Annals of the New York Academy of Sciences, 990, 103–106. DOI: 10.1111/j.17496632.2003.tb07345.x10.1111/j.17496632.2003.tb07345.xSearch in Google Scholar

Račka K. Bártová E., Budíková M., Vodrážka P. 2015. Survey of Toxoplasma gondii antibodies in meat juice of wild boar (Sus scrofa) in several districts of the Czech Republic. Annals of Agricultural and Environmental Medicine, 22, 231–5. DOI: 10.5604/12321966.115207110.5604/12321966.1152071Search in Google Scholar

Reiterová K., Špilovská S., Čobádiová A., Mucha R. 2011. First in vitro isolation of Neospora caninum from a naturally infected adult dairy cow in Slovakia. Acta Parasitologica, 56, 111–115. DOI: 10.2478/s11686-011-0019-910.2478/s11686-011-0019-9Search in Google Scholar

Schley L., Roper T.J. 2003. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mammal Review 33, 43–5610.1046/j.1365-2907.2003.00010.xSearch in Google Scholar

Schlüter D., Däubener W., Schares G., Groß U., Pleyer U., Lüder C. 2014. Animals are key to human toxoplasmosis. International Journal of Medical Microbiology, 304, pp. 917–929. DOI: 10.1016/j.ijmm.2014.09.00210.1016/j.ijmm.2014.09.002Search in Google Scholar

Silaghi C., Pfister K., Overzier E. 2014. Molecular investigation for bacterial and protozoan tick-borne pathogens in wild boars (Sus scrofa) from Southern Germany. Vector Borne Zoonotic Diseases, 14, 371–373. DOI:10.1089/vbz.2013.149510.1089/vbz.2013.1495Search in Google Scholar

Strasek Smrdel K, Bidovec A, Malovrh T, Petrovec M, Duh D, Avsic Zupanc T. 2009. Detection of Anaplasma phagocytophilum in wild boar in Slovenia. Clinical Microbiology and Infection, 15 (Suppl 2), 50–52. DOI:10.1111/j.1469-691.2008.02174.x10.1111/j.1469691.2008.02174.xSearch in Google Scholar

Stuen S. 2007. Anaplasma phagocytophilum – the most widespread tick-borne infection in animals in Europe. Veterinary Research Communications, 31, 79–84. DOI: 10.1007/s11259007-0071-y10.1007/s11259-007-0071-ySearch in Google Scholar

Špilovská S., Reiterová K., Hisira V. 2008. Serological monitoring of neosporosis in wild boars from selected localities of Slovakia. Infovet, 15, 222–223 (In Slovak)Search in Google Scholar

Tenter A.M., Heckeroth A.R., Weiss L.M. 2000. Toxoplasma gondii: from animals to humans. International Journal for Parasitology, 30, 1217–1258. DOI: 10.1016/S0020-7519(00)00124-710.1016/S0020-7519(00)00124-7Search in Google Scholar

Williams D.J., Hartley C.S., Björkman C, Trees A.J. 2009. Endogenous and exogenous transplacental transmission of Neospora caninum – how the route of transmission impacts on epidemiology and control of disease. Parasitology, 136, 1895– 1900. DOI: http://dx.doi.org/10.1017/S0031182009990588http://dx.doi.org/10.1017/S0031182009990588Search in Google Scholar PubMed

Witkowski L., Czopowicz M., Nagy D.A., Potarniche A.V., Aoanei M.A., Imomov N., Mickiewicz M., Welz M., Szaluś-Jordanow O., Kaba J. 2015. Seroprevalence of Toxoplasma gondii in wild boars, red deer and roe deer in Poland. Parasite, 22, 17. DOI: 10.1051/parasite/201501710.1051/parasite/2015017Search in Google Scholar PubMed PubMed Central

Yamage M., Flechtner O., Gottstein B. 1996. Neospora caninum: specific oligonucleotide primers for the detection of brain cyst DNA of experimentally infected nude mice by the polymerase chain reaction (PCR). International Journal for Parasitology, 82, 272–279. DOI: 10.2307/328416010.2307/3284160Search in Google Scholar

Received: 2015-10-16
Revised: 2015-11-27
Accepted: 2015-12-1
Published Online: 2016-3-30
Published in Print: 2016-6-1

© W. Stefański Institute of Parasitology, PAS

Articles in the same Issue

  1. Research Article
  2. Human Trichinella infection outbreaks in Slovakia, 1980-2008
  3. Research Article
  4. Immune responses in rats and sheep induced by a DNA vaccine containing the phosphoglycerate kinase gene of Fasciola hepatica and liver fluke infection
  5. Research Article
  6. Isolation and identification of Acanthamoeba spp. from thermal swimming pools and spas in Southern Brazil
  7. Research Article
  8. First report and spore ultrastructure of Vairimorpha plodiae (Opisthokonta: Microspora) from Plodia interpunctella (Lepidoptera: Pyralidae) in Turkey
  9. Research Article
  10. Evaluation of immuno diagnostic assay for the exposure of stage specific filarial infection
  11. Research Article
  12. Morphological, molecular and developmental characterization of the thelastomatid nematode Thelastoma bulhoesi (de Magalhães, 1900) (Oxyuridomorpha: Thelastomatidae) parasite of Periplaneta americana (Linnaeus, 1758) (Blattodea: Blattidae) in Japan
  13. Research Article
  14. Wild boar (Sus scrofa) – reservoir host of Toxoplasma gondii, Neospora caninum and Anaplasma phagocytophilum in Slovakia
  15. Research Article
  16. Prevalence of Giardia spp. in young dogs using a combination of two diagnostic methods
  17. Research Article
  18. CIAS detection of Fasciola hepatica/F. gigantica intermediate forms in bovines from Bangladesh
  19. Research Article
  20. Redescription of two species of cystidicolid nematodes (Spirurina: Cystidicolidae) from Notopterus notopterus (Osteichthyes) in Thailand
  21. Research Article
  22. Paradiplozoon iraqensis n. sp. (Monogenea: Diplozoinae) from Cyprinion macrostomum (Cyprinidae) in the Tigris River, Iraq
  23. Research Article
  24. Genetic diversity of Diplomonadida in fish of the genus Coregonus from Southeastern Siberia
  25. Research Article
  26. Dynamics and effects of Ligula intestinalis (L.) infection in the native fish Barbus callensis Valenciennes, 1842 in Algeria
  27. Research Article
  28. Bioinformatics analysis and expression of a novel protein ROP48 in Toxoplasma gondii
  29. Research Article
  30. Vertical transmission of Trypanosoma evansi in dromedary camels and studies on fetal pathology, diagnosis and treatment
  31. Research Article
  32. Molecular detection and prevalence of Theileria equi and Babesia caballi in horses of central Balkan
  33. Research Article
  34. Two new species of the genus Pterygosoma (Acariformes: Pterygosomatidae) parasitizing agamid lizards (Sauria: Agamidae) from the Indian subcontinent
  35. Research Article
  36. A new species of Spauligodon (Nematoda; Oxyuroidea; Pharyngodonide) and other Helminths in Ptychozoon Kuhli (Squamata: Gekkonidae) from East Malaysia
  37. Research Article
  38. Molecular characterization and phylogeny of some mazocraeidean monogeneans from carangid fish
  39. Research Article
  40. Validation of the TrichinEasy® digestion system for the detection of Anisakidae larvae in fish products
  41. Research Article
  42. Evaluation of the in vitro activity of ceragenins against Trichomonas vaginalis
  43. Research Article
  44. Prevalence and genotypes of Enterocytozoon bieneusi in sika deer in Jilin province, Northeastern China
  45. Research Article
  46. Endoparasitic fauna of red foxes (Vulpes vulpes) and golden jackals (Canis aureus) in Serbia
  47. Research Article
  48. Molecular characterization of Giardia duodenalis from white yaks in China
  49. Research Article
  50. Seroprevalence of Toxoplasma gondii among turkeys on family farms in the state of Northeastern Brazil
  51. Research Article
  52. First report of molecular identification of Cystoisospora suis in piglets with lethal diarrhea in Japan
  53. Research Article
  54. Determination of PCT on admission is a useful tool for the assessment of disease severity in travelers with imported Plasmodium falciparum malaria
  55. Research Article
  56. Dynamics of Theileria orientalis genotype population in cattle in a year-round grazing system
  57. Research Article
  58. A new isosporoid coccidia (Apicomplexa: Eimeriidae)from the southern house wren Troglodytes musculus Naumann, 1823 (Passeriformes: Troglodytidae) from Brazil
  59. Research Article
  60. Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminut a reveals their immunogenic properties and the presence of new E-S proteins in cestodes
Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ap-2016-0035/html
Scroll to top button