Startseite Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea

  • L. Singh EMAIL logo und R. Singh
Veröffentlicht/Copyright: 30. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Three new solid lanthanide(III) complexes, [Ln(1-AMUH)3] · (NO3)3 (1-AMUH = 1-amidino-O-methylurea; Ln = Eu(III), Gd(III), or Tb(III)) were synthesised and characterised by elemental analysis, infrared spectra, magnetic moment measurement, and electron paramagnetic resonance (EPR) spectra for Gd(III) complex. The formation of lanthanide(III) complexes is confirmed by the spectroscopic studies. The photophysical properties of Gd(III), Eu(III), and Tb(III) complexes in solid state were investigated. The Tb(III) complex exhibits the strongest green emission at 543 nm and the Eu(III) complex shows a red emission at 615 nm while the Gd(III) complex shows a weak emission band at 303 nm. Under excitation with UV light, these complexes exhibited an emission characteristic of central metal ions. The powder EPR spectrum of the Gd(III) complex at 300 K exhibits a single broad band with g = 2.025. The bi-exponential nature of the decay lifetime curve is observed in the Eu(III) and Tb(III) complexes. The results reveal them to have potential as luminescent materials.

[1] Agarwal, R. K., & Gupta, S. K. (1987). Spectral and thermal investigations in lanthanum(III) and lanthanide (III) complexes of 5,6-benzoquinoline. Polish Journal of Chemistry, 61, 341–354. Suche in Google Scholar

[2] Aime, S., Botta, M., Fasano, M., Crich, S. G., & Terreno, E. (1996). Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin. Journal of Biological Inorganic Chemistry, 1, 312–319. DOI: 10.1007/s007750050059. http://dx.doi.org/10.1007/s00775005005910.1007/s007750050059Suche in Google Scholar

[3] Binnemans, K. (2009). Lanthanide-based luminescent hybrid materials. Chemical Reviews, 109, 4283–4374. DOI: 10.1021/cr8003983. http://dx.doi.org/10.1021/cr800398310.1021/cr8003983Suche in Google Scholar

[4] Binnemans, K., & Görller-Walrand, C. (2002). Lanthanidecontaining liquid crystals and surfactants. Chemical Reviews, 102, 2303–2345. DOI: 10.1021/cr010287y. http://dx.doi.org/10.1021/cr010287y10.1021/cr010287ySuche in Google Scholar

[5] Bünzli, J. C. G., & Piguet, C. (2002). Lanthanide-containing molecular and supramolecular polymetalic functional assemblies. Chemical Reviews, 102, 1897–1928. DOI: 10.1021/cr010299j. http://dx.doi.org/10.1021/cr010299j10.1021/cr010299jSuche in Google Scholar

[6] Bünzli, J. C. G., Chauvin, A. S., Kim, H. K., Deiters, E., & Eliseeva, S. V. (2010). Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coordination Chemistry Reviews, 254, 2623–2633. DOI: 10.1016/j.ccr.2010.04.002. http://dx.doi.org/10.1016/j.ccr.2010.04.00210.1016/j.ccr.2010.04.002Suche in Google Scholar

[7] Costes, J. P., Clemente-Juan, J. M., Dahan, F., Nicodème, F., & Verelst, M. (2002). Unprecedented ferromagnetic interaction in homobinuclear erbium and gadolinium complexes: Structural and magnetic studies. Angewandte Chemie International Edition, 41, 323–325. DOI: 10.1002/1521-3773(20020118)41:2<323. http://dx.doi.org/10.1002/1521-3773(20020118)41:2<323::AID-ANIE323>3.0.CO;2-910.1002/1521-3773(20020118)41:2<323::AID-ANIE323>3.0.CO;2-9Suche in Google Scholar

[8] Devi, S. P., Singh, R. K. H., & Kadam, R. M. (2006). Synthesis and spectroscopic studies on copper(II) binuclear complexe of 1-phenylamidino-O-alkylurea (alkyl = n-propyl, n- and iso-butyl) with 1,3-diaminopropane or ethylenediamine. Inorganic Chemistry, 45, 2193–2198. DOI: 10.1021/ic051037t. http://dx.doi.org/10.1021/ic051037t10.1021/ic051037tSuche in Google Scholar

[9] Forsberg, J. H., & Moeller, T. (1969). Rare earths. LXXIX. Syntheses and properties of ethylenediamine chelates of the tripositive lanthanide ions. Inorganic Chemistry, 8, 883–888. DOI: 10.1021/ic50074a036. http://dx.doi.org/10.1021/ic50074a03610.1021/ic50074a036Suche in Google Scholar

[10] Gudasi, K. B., Shenoy, R. V., Vadavi, R. S., Patil, M. S., Patil, S. A., Hanchinal, R. R., Desai, S. A., & Lohithaswa, H. (2006). Lanthanide(III) and yttrium(III) complexes of benzimidazole-2-acetic acid: Synthesis, characterization and effect of La(III) complex on germination of wheat. Bioinorganic Chemistry and Applications, 2006, 75612. DOI: 10.1155/bca/2006/75612. 10.1155/BCA/2006/75612Suche in Google Scholar

[11] Gusev, A. N., Shul’gin, V. F., Nishimenko, G., Hasegawa, M., & Linert, W. (2013). Photo- and electroluminescent properties europium complexes using bistriazole ligands. Synthetic Metals, 164, 17–21. DOI: 10.1016/j.synthmet.2012.12.020. http://dx.doi.org/10.1016/j.synthmet.2012.12.02010.1016/j.synthmet.2012.12.020Suche in Google Scholar

[12] Hirashima, Y., Kanetsuki, K., Yonezu, I., Kamakura, K., & Shiokawa, J. (1983). Lanthanoid nitrate complexes with some polyethylene glycols and glymes. Bulletin of the Chemical Society of Japan, 56, 738–743. DOI: 10.1246/bcsj.56.738. http://dx.doi.org/10.1246/bcsj.56.73810.1246/bcsj.56.738Suche in Google Scholar

[13] Huang, H. L., Zhong, C. F., Zhang, H. L., & Zhou, Y. (2008). Synthesis and photophysical properties of novel polymeric Eu(III) complex with bicoordination ligand. Journal of Luminescence, 128, 1863–1866. DOI: 10.1016/j.jlumin.2008.05.008. http://dx.doi.org/10.1016/j.jlumin.2008.05.00810.1016/j.jlumin.2008.05.008Suche in Google Scholar

[14] Hughes, E. W. (1940). The crystal structure of dicyandiamide. Journal of the American Chemical Society, 62, 1258–1267. DOI: 10.1021/ja01862a079. http://dx.doi.org/10.1021/ja01862a07910.1021/ja01862a079Suche in Google Scholar

[15] Hughes, E. W. (1940). Contribution from the Gates and Crellin Laboratories of Chemistry, 62, 1258. Suche in Google Scholar

[16] Kido, J., & Okamoto, Y. (2002). Organo lanthanide metal complexes for electroluminescent materials. Chemical Reviews, 102, 2357–2368. DOI: 10.1021/cr010448y. http://dx.doi.org/10.1021/cr010448y10.1021/cr010448ySuche in Google Scholar

[17] Loitongbam, R. S., Singh, W. R., Phaomei, G., & Singh, N. S. (2013). Blue and green emission from Ce3+ and Tb3+ codoped Y2O3 nanoparticles. Journal of Luminescence, 140, 95–102. DOI: 10.1016/j.jlumin.2013.02.049. http://dx.doi.org/10.1016/j.jlumin.2013.02.04910.1016/j.jlumin.2013.02.049Suche in Google Scholar

[18] Mahajan, R. K., Kaur, I., Kaur, R., Onimaru, A., Shinoda, S., & Tsukube, H. (2004). Lipophilic lanthanide tris(β-diketonate) complexes as an ionophore for Cl− anionselective electrodes. Analytical Chemistry, 76, 7354–7359. DOI: 10.1021/ac0497858. http://dx.doi.org/10.1021/ac049785810.1021/ac0497858Suche in Google Scholar

[19] McDonald, J. E., & Moeller, T. (1977). The rare earths-XC. Lanthanide(III) complexes of 1,3-propanediamine. Journal of Inorganic and Nuclear Chemistry, 39, 2287–2288. DOI: 10.1016/0022-1902(77)80416-8. http://dx.doi.org/10.1016/0022-1902(77)80416-810.1016/0022-1902(77)80416-8Suche in Google Scholar

[20] Moeller, T., Birnbaum, E. R., Forsberg, J. H., & Gayhart, R. B. (1968). Some aspects of the coordination chemistry of the rare earth. In L. Eyring (Ed.), Progress in the science and technology of the rare earths (Vol. 3, pp. 66–128). New York, NY, USA: Pergamon Press. Suche in Google Scholar

[21] Moeller, T., Martin, D. F., Thompson, L. C., Ferrús, R., Feistel, G. R., & Randall, W. J. (1965). The coordination chemistry of yttrium and rare earth metal ions. Chemical Reviews, 65, 1–50. DOI: 10.1021/cr60233a001. http://dx.doi.org/10.1021/cr60233a00110.1021/cr60233a001Suche in Google Scholar

[22] Mutalik, V., & Phaniband, M. A. (2011). Synthesis, characterization, fluorescent and antimicrobial properties of new lanthanide(III) complexes derived from coumarin Schiff base. Journal of Chemical and Pharmaceutical Research, 3, 313–330. Suche in Google Scholar

[23] Mungchamnakit, A., Limsuwan, P., Thongcham, K., & Meejoo, S. (2008). The electron spin resonance study of Gd3+ in natural zircon. Journal of Magnetism and Magnetic Materials, 320, 479–482. DOI: 10.1016/j.jmmm.2007.07.014. http://dx.doi.org/10.1016/j.jmmm.2007.07.01410.1016/j.jmmm.2007.07.014Suche in Google Scholar

[24] Nakamoto, K. (1986). Infrared and Raman spectra of inorganic and coordination compounds (4th ed., pp. 257). New York, NY, USA: Wiley. Suche in Google Scholar

[25] Ndao, A. S., Buzády, A., Erostyák, J., & Hornyák, I. (2008). Sensitized luminescence of trivalent lanthanide complexes Eu3+/quinaldinic acid and Eu3+/1,4-dihydro-oxo-chinoline-3-carboxylic acid. Journal of Fluorescence, 18, 649–654. DOI: 10.1007/s10895-008-0333-2. http://dx.doi.org/10.1007/s10895-008-0333-210.1007/s10895-008-0333-2Suche in Google Scholar PubMed

[26] Prasad, S., Agarwal, R. K., & Kumar, A. (2011). Synthesis, characterization and biological evaluation of a novel series of mixed ligand complexes of lanthanides(III) with 4[N-(furfural)amino]antipyrine semicarbazone as primary ligand and diphenyl sulfoxide as secondary ligand. Journal of the Iranian Chemical Society, 8, 825–839. DOI: 10.1007/bf03245913. http://dx.doi.org/10.1007/BF0324591310.1007/BF03245913Suche in Google Scholar

[27] Ramirez, F. D. M., Sosa-Torres, M. L., Castro, M., Basurto-Uribe, E., Zamorano-Ulloa, R., & del Río-Portilla, F. (1997). Synthesis, 1H, 13C NMR and magnetic studies of the homodinuclear lanthanide(III) polymeric compounds formed with the 1,5,9,13-tetraazacyclonehexadecane ligand. Journal of Coordination Chemistry, 41, 303–326. DOI: 10.1080/00958979708045507. http://dx.doi.org/10.1080/0095897970804550710.1080/00958979708045507Suche in Google Scholar

[28] Radhakrisnan, P. K., Indrasenan, P., & Nair, C. G. R. (1984). Complexes of lanthanide nitrates with 4n-(2′-hydroxybenzylidene)-aminoantipyrine. Polyhedron, 3, 67–70. DOI: 10.1016/s0277-5387(00)84714-2. http://dx.doi.org/10.1016/S0277-5387(00)84714-210.1016/S0277-5387(00)84714-2Suche in Google Scholar

[29] Rizzi, A., Baggio, R., Calvo, R., Garland, M. T., Peña, O., & Perec, M. (2001). Synthesis, crystal structure and magnetic properties of the mixed-ligand complex [Gd(CF3CO2)3 (phen)2(H2O)]. Inorganic Chemistry, 40, 3623–3625. DOI: 10.1021/ic001243v. http://dx.doi.org/10.1021/ic001243v10.1021/ic001243vSuche in Google Scholar PubMed

[30] Singh, L. J., Devi, N. S., Devi, S. P., Devi, W. B., Singh, R. K. H., Rajeswari, B., & Kadam, R. M. (2010). Spectroscopic studies on bis(1-amidino-O-alkylurea) copper(II) sulphate complexes where alkyl = methyl, ethyl, n-propyl or n-butyl: EPR evidence for binuclear complexes. Inorganic Chemistry Communications, 13, 365–368. DOI:10.1016/j.inoche.2009.12.023. http://dx.doi.org/10.1016/j.inoche.2009.12.02310.1016/j.inoche.2009.12.023Suche in Google Scholar

[31] Singh, L. J., Singh, R. K. H., & Chitra, R. (2012). Synthesis, spectroscopic, powder X-ray diffraction and DNA binding studies on copper(II) complexes of 4,4′-diaminodiphenyl sulfone. Journal of the Iranian Chemistry Society, 9, 441–448. DOI: 10.1007/s13738-011-0054-3. http://dx.doi.org/10.1007/s13738-011-0054-310.1007/s13738-011-0054-3Suche in Google Scholar

[32] Svatos, G. F., Curran, C., & Quagliano, J. V. (1955). Infrared absorption spectra of inorganic coordination complexes.1a,b V. The N-H stretching vibration in coordination compounds. Journal of the American Chemical Society, 77, 6159–6163. DOI: 10.1021/ja01628a019. http://dx.doi.org/10.1021/ja01628a01910.1021/ja01628a019Suche in Google Scholar

[33] Wang, H. D., Chen, Y., Li, Y. T., & Zeng, X. C. (2004). Synthesis, characterisation, and thermal decomposition of oxamido heterobinuclear Cu(II)-Ln(III) complexes. Thermochimica Acta, 412, 97–105. DOI: 10.1016/j.tca.2003.09.006. http://dx.doi.org/10.1016/j.tca.2003.09.00610.1016/j.tca.2003.09.006Suche in Google Scholar

[34] Wu, A. Q., Zheng, F. K., Chen, W. T., Cai, L. Z., Guo, G. C., Huang, J. S., Dong, Z. C., & Takano, Y. (2004). Two series of novel rare earth complexes with dicyanamide [Ln(dca)2(phen)2(H2O)3][dca]·(phen), (Ln = Pr, Gd, and Sm) and [Ln(dca)3(2,2′-bipy)2(H2O)]n, (Ln = Gd, Sm, and La): Syntheses, crystal structures, and magnetic properties. Inorganic Chemistry, 43, 4839–4845. DOI: 10.1021/ic035470j. http://dx.doi.org/10.1021/ic035470j10.1021/ic035470jSuche in Google Scholar PubMed

[35] Yan, B., & Song, Y. S. (2004). Spectroscopic study on the photophysical properties of lanthanide complexes with 2,2′-bipyridine-N,N′-dioxide. Journal of Fluorescence, 14, 289–294. DOI: 10.1023/b:jofl.0000024561.55183.26. http://dx.doi.org/10.1023/B:JOFL.0000024561.55183.2610.1023/B:JOFL.0000024561.55183.26Suche in Google Scholar

[36] Zucchi, G. (2011). The utility of 2,2′-bipyridine in lanthanide chemistry: From materials synthesis to structural and physical properties. International Journal of Inorganic Chemistry, 2011, 918435. DOI: 10.1155/2011/918435. http://dx.doi.org/10.1155/2011/91843510.1155/2011/918435Suche in Google Scholar

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
  2. Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
  3. Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
  4. Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
  5. Influence of operating conditions on performance of ceramic membrane used for water treatment
  6. Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
  7. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
  8. A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
  9. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
  10. Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
  11. Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
  12. Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
  13. Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
  14. Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
  15. Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
  16. X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
  17. 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Heruntergeladen am 4.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0446-1/html
Button zum nach oben scrollen